2018 15th International Conference on the European Energy Market (EEM) 2018
DOI: 10.1109/eem.2018.8469901
|View full text |Cite
|
Sign up to set email alerts
|

A Hybrid Model Based on Symbolic Regression and Neural Networks for Electricity Load Forecasting

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
3
2

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 14 publications
0
2
0
1
Order By: Relevance
“…The training data set is used to generate and optimize solutions whereas the validation set is used for model selection, that is, for identifying models for the final Pareto front of solutions. During the models' searching process, the program constructs a set of different models whose progress and performance over time can be assessed in a Pareto front (21), as shown in Figure 3, allowing the evaluation of the fitness score of the validation set and the complexity of the model. Eureqa applies a penalty proportional to the formula's complexity to avoid overfitting.…”
Section: Description Of Regression Methodsmentioning
confidence: 99%
“…The training data set is used to generate and optimize solutions whereas the validation set is used for model selection, that is, for identifying models for the final Pareto front of solutions. During the models' searching process, the program constructs a set of different models whose progress and performance over time can be assessed in a Pareto front (21), as shown in Figure 3, allowing the evaluation of the fitness score of the validation set and the complexity of the model. Eureqa applies a penalty proportional to the formula's complexity to avoid overfitting.…”
Section: Description Of Regression Methodsmentioning
confidence: 99%
“…Interestingly, genetic algorithms have been used in various econometric models, and were claimed to be very useful (Claveria et al 2022;Garcia and Kristjanpoller 2019;Claveria et al 2016Claveria et al , 2017Mostafa and El-Masry 2016;Aguilar-Rivera et al 2015;Sermpinis et al 2015;Sheta et al 2013;Hasheminia and Niaki 2006). While widely popular in technical fields, such as engineering, and nature-oriented sciences, such as ecology and medicine (Dimoulkas et al 2018;Klotz et al 2017;Golafshani and Ashour 2016;Ceperic et al 2014;Narotam et al 2014;Sarradj and Geyer 2014), they have not yet been extensively applied in economics or finance, especially in the context of variable uncertainty, and particularly for forecasting commodity prices.…”
Section: Introductionmentioning
confidence: 99%
“…En cuanto a la predicción del consumo eléctrico, entre los trabajos basados en Regresión Simbólica, (Jinliang Yin et al, 2008) utiliza la variante Gene Expression Programming, pero sólo tienen en cuenta las variables consumo eléctrico y temperatura como entradas. Por otro lado, (Dimoulkas et al, 2018) utiliza Programación Genética sólo para seleccionar variables de entrada, mientras que el proceso de predicción se realiza con redes neuronales. Entonces, no se tiene un modelo matemático explícito que pueda ser analizado posteriormente.…”
Section: Introductionunclassified