Many countries have the ambition to increase the share of renewable sources in electricity generation. However, continuously varying renewable sources, such as wind power or solar energy, require that the power system can manage the variability and uncertainty of the power generation. One solution to increase flexibility of the system is to use various forms of energy storage, which can provide flexibility to the system at different time ranges and smooth the effect of variability of the renewable generation. In this paper, we investigate three questions connected to investment planning of energy storage systems. First, how the existing flexibility in the system will affect the need for energy storage investments. Second, how presence of energy storage will affect renewable generation expansion and affect electricity prices. Third, who should be responsible for energy storage investments planning. This paper proposes to assess these questions through two different mathematical models. The first model is designed for centralized investment planning and the second model deals with a decentralized investment approach where a single independent profit maximizing utility is responsible for energy storage investments. The models have been applied in various case studies with different generation mixes and flexibility levels. The results show that energy storage system is beneficial for power system operation. However, additional regulation should be considered to achieve optimal investment and allocation of energy storage.
A well-planned electric transmission infrastructure is the foundation of a reliable and efficient power system, especially in the presence of large scale renewable generation. However, the current electricity market designs lack incentive mechanisms which can guarantee optimal transmission investments and ensure reliable integration of renewable generation such as wind. This paper first proposes a stochastic bilevel disjunctive program for optimal transmission investment based on the newly proposed theoretical H-R-G-V incentive mechanism. The upper level is a profit-maximization problem of an independent transmission company (Transco), while the lower level is a welfare maximization problem. The revenue of the Transco is bounded by a regulatory constraint set by the regulator in order to induce socially optimal investments. The application of the H-R-G-V mechanism allows the regulator to ensure social maximum transmission investments and helps to reduce transmission congestion and wind power spillage. The transmission investment under the H-R-G-V mechanism is modeled as a stochastic bilevel disjunctive program. To solve the developed mathematical model we first propose a series of linearization and reformulation techniques to recast the original model as a stochastic mixed integer linear problem (MILP). We exploit the disjunctive nature of the reformulated stochastic MILP model and further propose a Bean decomposition algorithm to efficiently solve the stochastic MILP model. The proposed decomposition algorithm is also modified and accelerated to improve the computational performance. The computational performance of our MILP modeling approach and modified and accelerated Bean decomposition algorithm is studied through several examples in detail. The simulation results confirm a promising performance of both the modeling approach and its solution algorithm. Keywords Transmission network investments • Incentive regulation • Bean decomposition algorithm • Disjunctive programming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.