Решение эллиптических уравнений методом лучевых переменныхНайдены неизвестные ранее решения внутренних краевых задач для неоднородных линейных эллиптических уравнений второго порядка при достаточно слабых ограничениях на поведение коэффициентов, источников и форму области. Решения ищутся в виде суперпозиции вкладов объемных и граничных источников, размещенных на лучах, приходящих в данную точку области от границ. Источники задаются с помощью лучевых переменных: направления луча, соединяющего две точки, и расстояния, отсчитываемого вдоль луча.Построена конечно-аналитическая схема для численного решения задач с разрывными коэффициентами и источниками. Область разбивается на ячейки, в пределах которых коэффициенты и источники непрерывны, а конечные разрывы (если они есть) приходятся на границы ячеек. Далее выполняется сшивка решений на границах. В схеме отсутствует жесткая зависимость точности аппроксимации от размеров и формы ячеек, присущая конечно-разностным схемам.Ключевые слова: эллиптические уравнения, краевые задачи, метод лучевых переменных, конечно-аналитические схемы.
Alexander Victorovich ShilkovOn the solution of elliptic equations by the ray variable methodPreviously unknown solutions of the inner boundary value problems for inhomogeneous linear second-order elliptic equations with sufficiently weak restrictions on the coefficients, sources, and the region shape are found. Solutions are sought in the form of a superposition of the contributions of volume and boundary sources placed on the rays arriving at the reference point from the boundaries of the region. Sources are given by means of ray variables: the direction of the ray connecting two points and the distance, measured along the ray.The finite-analytic discretization scheme is constructed for the numerical solution of problems with discontinuous coefficients and sources. The region is divided into cells, within which the coefficients and sources are continuous, and the finite discontinuities (if any) occur at the cell boundaries. Next, the solutions are cross-linked at the boundaries. In the scheme, there is no strong dependence of the accuracy of approximation from the size and shape of the cells that inherent in finite-difference schemes.