The aim of this study was to apply a strategy to express a recombinant CLP peptide and explore its application as a product derived from natural compounds. The amphiphilic CLP peptide was hybridized from three parent peptides (CM4, LL37, and TP5) and was considered to have potent endotoxin-neutralizing activity with minimal cytotoxic and hemolytic activity. To achieve high secretion expression, an expression vector of pPICZαA-HSA-CLP was constructed by the golden gate cloning strategy before being transformed into Pichia pastoris and integrated into the genome. The recombinant CLP was purified through the Ni-NTA affinity chromatography and analyzed by SDS-PAGE and mass spectrometry. The Limulus amebocyte lysate (LAL) test exhibited that the hybrid peptide CLP inhibited lipopolysaccharides (LPS) in a dose-dependent manner and was significantly (p < 0.05) more efficient compared to the parent peptides. In addition, it essentially diminished (p < 0.05) the levels of nitric oxide and pro-inflammatory cytokines (including TNF-α, IL6, and IL-1β) in LPS-induced mouse RAW264.7 macrophages. As an attendant to the control and the parental peptide LL37, the number of LPS-induced apoptotic cells was diminished compared to the control parental peptide LL37 (p < 0.05) with the treatment of CLP. Consequently, we concluded that the hybrid peptide CLP might be used as a therapeutic agent.