Digital watermarking has been widely used for ownership identification and copyright protection. In this chapter, a color image watermarking method based on Radon transform (RT) and Jordan decomposition (JD) is proposed. Initially, the host color image is converted into L*a*b* color space. Then, the b* channel is selected and it is divided into 16  16 non-overlapping blocks. RT is applied to each of these blocks. JD is applied to the selected RT coefficients of each block represented in m  n matrix. Watermark data is embedded in the coefficients of the similarity transform matrix obtained from JD using a new quantization equation. Experimental results indicate that the proposed method is highly robust against various attacks such as noise addition, cropping, filtering, blurring, rotation, JPEG compression etc. In addition, it provides high quality watermarked images. Moreover, it shows superior performance than the state-of-the-art methods reported recently in terms of imperceptibility and robustness.