The electric double layer governs the processes of all charged surfaces in aqueous solutions, however elucidating the structure of the water molecules is challenging for even the most advanced spectroscopic techniques. Here, we present the individual Stern layer and diffuse layer OH stretching spectra at the silica/water interface in the presence of NaCl over a wide pH range using a combination of vibrational sum frequency generation and heterodyned second harmonic generation techniques, streaming potential measurements, and the maximum entropy method. We find that the Stern layer water molecules and diffuse layer water molecules respond differently to pH changes: unlike the diffuse layer, whose water molecules remain net-oriented in one direction, water molecules in the Stern layer flip their net orientation as the solution pH is reduced from basic to acidic. We obtain an experimental estimate of the dipole potential contribution to the total potential drop across the insulator/electrolyte interface and find it to dominate over the Coulomb-only (Gouy-Chapman, Gouy-Chapman-Stern) contribution. We quantify how these contributions result in a considerable influence on the vibrational lineshapes. Our findings show that a purely Coulombic view is insufficient to accurately describe the electrical double layer over aqueous interfaces.