We examine theoretically the intersubband transitions induced by laser beams of light with orbital angular momentum (twisted light) in semiconductor quantum wells at normal incidence. These transitions become possible in the absence of gratings thanks to the fact that collimated laser beams present a component of the light's electric field in the propagation direction. We derive the matrix elements of the light-matter interaction for a Bessel-type twisted-light beam represented by its vector potential in the paraxial approximation. Then, we consider the dynamics of photo-excited electrons making intersubband transitions between the first and second subbands of a standard semiconductor quantum well. Finally, we analyze the light-matter matrix elements in order to evaluate which transitions are more favorable for given orbital angular momentum of the light beam in the case of small semiconductor structures.