2022
DOI: 10.17559/tv-20210102034143
|View full text |Cite
|
Sign up to set email alerts
|

A Kernel Entropy Method and its Application in Monitoring and Assessment of Wind Turbine Degradation Performance

Abstract: To overcome the problems of wind turbine (WT) degradation assessment, a new kernel entropy method based on supervisory control and data acquisition (SCADA) was proposed. This approach can be used to effectively monitor and assess WT performance degradation. First, a new condition monitoring method based on a kernel entropy component analysis (KECA) was developed for nonlinear data. Then, the squared prediction error (SPE) was used to monitor the WT health state. Due to the diversity and nonlinearity of SCADA d… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?