The connections between laboratory measurements and remote-sensing observations of sea ice are explored. The focus of this paper is on thin ice, which is more easily simulated in a laboratory environment. We summarize results of C-band scatterometer measurements and discuss how they may help in the interpretation of remote-sensing data. We compare the measurements with observations of thin ice from ERS and airborne radar data sets. We suggest that laboratory backscatter signatures should serve as bounds on the interpretation of remote-sensing data. We examine these bounds from the perspective of thin ice signatures, the effect of temperature, and surface processes, such as frost flowers and slush on these signatures. Controlled experiments also suggest new directions in remote-sensing measurements. The potential of polarimetric radar measurements in the retrieval of thickness of thin ice is discussed. In addition to the radar results, we discuss the importance of low-frequency passive measurements with respect to the thickness of thin ice.