2022
DOI: 10.1109/lsp.2022.3228491
|View full text |Cite
|
Sign up to set email alerts
|

A Laplace Mixture Representation of the Horseshoe and Some Implications

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
8
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(8 citation statements)
references
References 30 publications
0
8
0
Order By: Relevance
“…Given false(n,qfalse)$$ \left(n,q\right) $$ and the true precision matrix normalΩ0$$ {\Omega}_0 $$, we generate 50 data sets from scriptNfalse(0,normalΩ01false)$$ \mathcal{N}\left(0,{\Omega}_0^{-1}\right) $$ and estimate the precision matrix truenormalΩ^$$ \hat{\Omega} $$ using the methods mentioned above. Tuning parameters for graphical lasso and LLA‐based methods are chosen by fivefold cross validation; see Sagar and Bhadra ((2022), Appendix) for other ways of tuning the global scale parameter τ$$ \tau $$. The stopping criterion for LLA‐based methods is set as false|false|normalΩfalse(t+1false)normalΩfalse(tfalse)false|false|2<103$$ {\left\Vert {\Omega}^{\left(t+1\right)}-{\Omega}^{(t)}\right\Vert}_2<1{0}^{-3} $$, and we draw a total of 6000 samples from the posterior (with 1000 burn‐in samples), for the GHS estimate.…”
Section: Numerical Resultsmentioning
confidence: 99%
See 4 more Smart Citations
“…Given false(n,qfalse)$$ \left(n,q\right) $$ and the true precision matrix normalΩ0$$ {\Omega}_0 $$, we generate 50 data sets from scriptNfalse(0,normalΩ01false)$$ \mathcal{N}\left(0,{\Omega}_0^{-1}\right) $$ and estimate the precision matrix truenormalΩ^$$ \hat{\Omega} $$ using the methods mentioned above. Tuning parameters for graphical lasso and LLA‐based methods are chosen by fivefold cross validation; see Sagar and Bhadra ((2022), Appendix) for other ways of tuning the global scale parameter τ$$ \tau $$. The stopping criterion for LLA‐based methods is set as false|false|normalΩfalse(t+1false)normalΩfalse(tfalse)false|false|2<103$$ {\left\Vert {\Omega}^{\left(t+1\right)}-{\Omega}^{(t)}\right\Vert}_2<1{0}^{-3} $$, and we draw a total of 6000 samples from the posterior (with 1000 burn‐in samples), for the GHS estimate.…”
Section: Numerical Resultsmentioning
confidence: 99%
“…Proposition 1 Sagar and Bhadra (2022). The marginal horseshoe density for a scalar random variable admits the following representation as a Laplace mixture:…”
Section: Background and Motivationmentioning
confidence: 99%
See 3 more Smart Citations