The problem of precision matrix estimation in a multivariate Gaussian model is fundamental to network estimation. Although there exist both Bayesian and frequentist approaches to this, it is difficult to obtain good Bayesian and frequentist properties under the same prior-penalty dual, complicating justification. It is well known, for example, that the Bayesian version of the popular lasso estimator has poor posterior concentration properties. To bridge this gap for the precision matrix estimation problem, our contribution is a novel prior-penalty dual that closely approximates the popular graphical horseshoe prior and penalty, and performs well in both Bayesian and frequentist senses. A chief difficulty with the horseshoe prior is a lack of closed form expression of the density function, which we overcome in this article, allowing us to directly study the penalty function. In terms of theory, we establish posterior convergence rate of the precision matrix that matches the oracle rate, in addition to the frequentist consistency of the maximum a posteriori estimator. In addition, our results also provide theoretical justifications for previously developed approaches that have been unexplored so far, e.g. for the graphical horseshoe prior. Computationally efficient Expectation Conditional Maximization and Markov chain Monte Carlo algorithms are developed respectively for the penalized likelihood and fully Bayesian estimation problems, using the same latent variable framework. In numerical experiments, the horseshoe-based approaches echo their superior theoretical properties by comprehensively outperforming the competing methods. A protein-protein interaction network estimation in B-cell lymphoma is considered to validate the proposed methodology.
We propose an approach termed "qDAGx" for Bayesian covariate-dependent quantile directed acyclic graphs (DAGs) where these DAGs are individualized, in the sense that they depend on individual-specific covariates. A key distinguishing feature of the proposed approach is that the individualized DAG structure can be uniquely identified at any given quantile, based on purely observational data without strong assumptions such as a known topological ordering. For scaling the proposed method to a large number of variables and covariates, we propose for the model parameters a novel parameter expanded horseshoe prior that affords a number of attractive theoretical and computational benefits to our approach. By modeling the conditional quantiles, qDAGx overcomes the common limitations of mean regression for DAGs, which can be sensitive to the choice of likelihood, e.g., an assumption of multivariate normality, as well as to the choice of priors. We demonstrate the performance of qDAGx through extensive numerical simulations and via an application in precision medicine by inferring patient-specific protein-protein interaction networks in lung cancer.
Marginal likelihood, also known as model evidence, is a fundamental quantity in Bayesian statistics. It is used for model selection using Bayes factors or for empirical Bayes tuning of prior hyper-parameters. Yet, the calculation of evidence has remained a longstanding open problem in Gaussian graphical models. Currently, the only feasible solutions that exist are for special cases such as the Wishart or G-Wishart, in moderate dimensions. We present an application of Chib's technique that is applicable to a very broad class of priors under mild requirements. Specifically, the requirements are: (a) the priors on the diagonal terms on the precision matrix can be written as gamma or scale mixtures of gamma random variables and (b) those on the off-diagonal terms can be represented as normal or scale mixtures of normal. This includes structured priors such as the Wishart or G-Wishart, and more recently introduced element-wise priors, such as the Bayesian graphical lasso and the graphical horseshoe. Among these, the true marginal is known in an analytically closed form for Wishart, providing a useful validation of our approach. For the general setting of the other three, and several more priors satisfying conditions (a) and (b) above, the calculation of evidence has remained an open question that this article seeks to resolve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.