Purpose
Previous studies on environmental impacts from domestic laundry have tended to focus solely on private washing machines and detergent. However, public procurement guidelines about the construction of laundry spaces may also be important. This article aims to expand the scope of previous work so that it also includes tumble drying and the building space. By doing this, we examine the potential for shared systems (which are common in Sweden) to reduce the environmental impacts of laundry activities, in comparison with consumer choices associated with machine operation (i.e., wash temperature and amount of detergent).
Methods
An LCA model was created using product information data from the European Union. Emissions from building use were taken from Swedish cradle-to-grave reports on energy-efficient buildings. The resulting model was run with additional sensitivity analysis of the variables, and the associated emissions from each of the scenarios were calculated.
Results and discussion
On average, greenhouse gas (GHG) emissions for private laundries in Sweden were estimated to be 190 g CO2 eq./kg laundry (washed and dried). If a shared laundry was used instead, the resulting emissions decreased by approximately 26%. The greatest contribution to GHG emissions was the use of detergent (22–33% of total emissions), followed by capital goods (11–38% of total emissions).
Conclusion
Deciding to construct shared laundries in newly built apartment buildings in Sweden, rather than in-unit machines, would reduce the emissions from domestic laundry for these tenants by approximately 26%. This is because materials used for manufacturing whitegoods, as well as the emissions associated with the building itself, play a much bigger role than previously thought. Additionally, since the cleaning efficiency of warm water and some of the components used in detergents rises with temperature, emissions from domestic laundering could for some consumers be reduced further by washing at higher temperature but with less detergent. This pattern could be seen in Sweden within regions with hard water, where the emissions from domestic laundry could be reduced by 6–12%.