Liposomes are representative lipid
nanoparticles widely used for
delivering anticancer drugs, DNA fragments, or siRNA to cancer cells.
Upon targeting, various internal and external triggers have been used
to increase the rate for contents release from the liposomes. Among
the internal triggers, decreased pH within the cellular lysosomes
has been successfully used to enhance the rate for releasing contents.
However, imparting pH sensitivity to liposomes requires the synthesis
of specialized lipids with structures that are substantially modified
at a reduced pH. Herein, we report an alternative strategy to render
liposomes pH sensitive by encapsulating a precursor which generates
gas bubbles in situ in response to acidic pH. The
disturbance created by the escaping gas bubbles leads to the rapid
release of the encapsulated contents from the liposomes. Atomic force
microscopic studies indicate that the liposomal structure is destroyed
at a reduced pH. The gas bubbles also render the liposomes echogenic,
allowing ultrasound imaging. To demonstrate the applicability of this
strategy, we have successfully targeted doxorubicin-encapsulated liposomes
to the pancreatic ductal carcinoma cells that overexpress the folate
receptor on the surface. In response to the decreased pH in the lysosomes,
the encapsulated anticancer drug is efficiently released. Contents
released from these liposomes are further enhanced by the application
of continuous wave ultrasound (1 MHz), resulting in substantially
reduced viability for the pancreatic cancer cells (14%).