Auscultation is one of the most used techniques for detecting cardiovascular diseases, which is one of the main causes of death in the world. Heart murmurs are the most common abnormal finding when a patient visits the physician for auscultation. These heart sounds can either be innocent, which are harmless, or abnormal, which may be a sign of a more serious heart condition. However, the accuracy rate of primary care physicians and expert cardiologists when auscultating is not good enough to avoid most of both type-I (healthy patients are sent for echocardiogram) and type-II (pathological patients are sent home without medication or treatment) errors made. In this paper, the authors present a novel convolutional neural network based tool for classifying between healthy people and pathological patients using a neuromorphic auditory sensor for FPGA that is able to decompose the audio into frequency bands in real time. For this purpose, different networks have been trained with the heart murmur information contained in heart sound recordings obtained from nine different heart sound databases sourced from multiple research groups. These samples are segmented and preprocessed using the neuromorphic auditory sensor to decompose their audio information into frequency bands and, after that, sonogram images with the same size are generated. These images have been used to train and test different convolutional neural network architectures. The best results have been obtained with a modified version of the AlexNet model, achieving 97% accuracy (specificity: 95.12%, sensitivity: 93.20%, PhysioNet/CinC Challenge 2016 score: 0.9416). This tool could aid cardiologists and primary care physicians in the auscultation process, improving the decision making task and reducing type-I and type-II errors.