In this paper we present a neuro-inspired spike-based close-loop controller written in VHDL and implemented for FPGAs. This controller has been focused on controlling a DC motor speed, but only using spikes for information representation, processing and DC motor driving. It could be applied to other motors with proper driver adaptation. This controller architecture represents one of the latest layers in a Spiking Neural Network (SNN), which implements a bridge between robotics actuators and spike-based processing layers and sensors. The presented control system fuses actuation and sensors information as spikes streams, processing these spikes in hard real-time, implementing a massively parallel information processing system, through specialized spike-based circuits. This spike-based close-loop controller has been implemented into an AER platform, designed in our labs, that allows direct control of DC motors: the AER-Robot. Experimental results evidence the viability of the implementation of spike-based controllers, and hardware synthesis denotes low hardware requirements that allow replicating this controller in a high number of parallel controllers working together to allow a real-time robot control.
Auscultation is one of the most used techniques for detecting cardiovascular diseases, which is one of the main causes of death in the world. Heart murmurs are the most common abnormal finding when a patient visits the physician for auscultation. These heart sounds can either be innocent, which are harmless, or abnormal, which may be a sign of a more serious heart condition. However, the accuracy rate of primary care physicians and expert cardiologists when auscultating is not good enough to avoid most of both type-I (healthy patients are sent for echocardiogram) and type-II (pathological patients are sent home without medication or treatment) errors made. In this paper, the authors present a novel convolutional neural network based tool for classifying between healthy people and pathological patients using a neuromorphic auditory sensor for FPGA that is able to decompose the audio into frequency bands in real time. For this purpose, different networks have been trained with the heart murmur information contained in heart sound recordings obtained from nine different heart sound databases sourced from multiple research groups. These samples are segmented and preprocessed using the neuromorphic auditory sensor to decompose their audio information into frequency bands and, after that, sonogram images with the same size are generated. These images have been used to train and test different convolutional neural network architectures. The best results have been obtained with a modified version of the AlexNet model, achieving 97% accuracy (specificity: 95.12%, sensitivity: 93.20%, PhysioNet/CinC Challenge 2016 score: 0.9416). This tool could aid cardiologists and primary care physicians in the auscultation process, improving the decision making task and reducing type-I and type-II errors.
Falls have become a relevant public health issue due to their high prevalence and negative effects in elderly people. Wearable fall detector devices allow the implementation of continuous and ubiquitous monitoring systems. The effectiveness for analyzing temporal signals with low energy consumption is one of the most relevant characteristics of these devices. Recurrent neural networks (RNNs) have demonstrated a great accuracy in some problems that require analyzing sequential inputs. However, getting appropriate response times in low power microcontrollers remains a difficult task due to their limited hardware resources. This work shows a feasibility study about using RNN-based deep learning models to detect both falls and falls’ risks in real time using accelerometer signals. The effectiveness of four different architectures was analyzed using the SisFall dataset at different frequencies. The resulting models were integrated into two different embedded systems to analyze the execution times and changes in the model effectiveness. Finally, a study of power consumption was carried out. A sensitivity of 88.2% and a specificity of 96.4% was obtained. The simplest models reached inference times lower than 34 ms, which implies the capability to detect fall events in real-time with high energy efficiency. This suggests that RNN models provide an effective method that can be implemented in low power microcontrollers for the creation of autonomous wearable fall detection systems in real-time.
Augmented reality and virtual reality technologies are increasing in popularity. Augmented reality has thrived to date mainly on mobile applications, with games like Pokémon Go or the new Google Maps utility as some of its ambassadors. On the other hand, virtual reality has been popularized mainly thanks to the videogame industry and cheaper devices. However, what was initially a failure in the industrial field is resurfacing in recent years thanks to the technological improvements in devices and processing hardware. In this work, an in-depth study of the different fields in which augmented and virtual reality have been used has been carried out. This study focuses on conducting a thorough scoping review focused on these new technologies, where the evolution of each of them during the last years in the most important categories and in the countries most involved in these technologies will be analyzed. Finally, we will analyze the future trend of these technologies and the areas in which it is necessary to investigate to further integrate these technologies into society.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.