In the last decades, sensing capabilities of martphones have greatly improved since the early mobile phones of the 90’s. Moreover, wearables and the automotive industry require increasing
electronics and sensing sophistication. In such echnological advance, Micro Electro Mechanical Systems (MEMS) have played an important role as accelerometers and gyroscopes were the first
sensors based on MEMS technology massively introduced in the market. In contrast, it still does not exist a commercial MEMS-based compass, even though Lorentz force MEMS magnetometers
were first proposed in the late 90’s.
Currently, Lorentz force MEMS magnetometers have been under the spotlight as they can offer an integrated solution to nowadays sensing power. As a consequence, great advances have been
achieved, but various bottlenecks limit the introduction of Lorentz force MEMS compasses in the market. First, current MEMS magnetometers require high current consumption and high biasing
voltages to achieve good sensitivities. Moreover, even though devices with excellent performance and sophistication are found in the literature, there is still a lack of research on the readout electronic circuits, specially in the digital signal processing, and closed loop control. Second, most research outcomes rely on custom MEMS fabrication rocesses to manufacture the devices. This is the same approach followed in current commercial MEMS, but it requires different fabrication processes for the electronics and the MEMS. As a consequence, manufacturing cost is high and
sensor performance is affected by the MEMS-electronics interface parasitics.
This dissertation presents potential solutions to these issues in order to pave the road to the commercialization of Lorentz force MEMS compasses. First, a complete closed loop, digitally controlled readout system is proposed. The readout circuitry, implemented with off-the-shelf commercial components, and the digital control, on an FPGA, are proposed as a proof of concept of the feasibility, and potential benefits, of such architecture. The proposed system has a measured
noise of 550 nT / vHz while the MEMS is biased with 300 µA rms and V = 1 V . Second, various CMOS-MEMS magnetometers have been designed using the BEOL part of the TSMC and SMIC 180 nm standard CMOS processes, and wet and vapor etched. The devices measurement and characterisation is used to analyse the benefits and drawbacks of each design as well as releasing process. Doing so, a high volume manufacturing viability can be performed. Yield values as high as 86% have been obtained for one device manufactured in a SMIC 180 nm full wafer run, having a sensitivity of 2.82 fA/µT · mA and quality factor Q = 7.29 at ambient pressure. While a device manufactured in TSMC 180 nm has Q = 634.5 and a sensitivity of 20.26 fA/µT ·mA at 1 mbar and V = 1 V. Finally, an integrated circuit has been designed that contains all the critical blocks to perform the MEMS signal readout. The MEMS and the electronics have been manufactured using
the same die area and standard TSMC 180 nm process in order to reduce parasitics and improve noise and current consumption. Simulations show that a resolution of 8.23 µT /mA for V = 1 V and BW = 10 Hz can be achieved with the designed device.
En les últimes dècades, tenint en compte els primers telèfons mòbils dels anys 90, les capacitats de sensat dels telèfons intel·ligents han millorat notablement. A més, la indústria automobilística i de wearables necessiten cada cop més sofisticació en el sensat. Els Micro Electro Mechanical Systems (MEMS) han tingut un paper molt important en aquest avenç tecnològic, ja que acceleròmetres i giroscopis varen ser els primers sensors basats en la tecnologia MEMS en ser introduïts massivament al mercat. En canvi, encara no existeix en la indústria una brúixola electrònica basada en la tecnologia MEMS, tot i que els magnetòmetres MEMS varen ser proposats per primera vegada a finals dels anys 90. Actualment, els magnetòmetres MEMS basats en la força de Lorentz són el centre d'atenció donat que poden oferir una solució integrada a les capacitats de sensat actuals. Com a conseqüència, s'han aconseguit grans avenços encara que existeixen diversos colls d'ampolla que encara limiten la introducció al mercat de brúixoles electròniques MEMS basades en la força de Lorentz. Per una banda, els agnetòmetres MEMS actuals necessiten un consum de corrent i un voltatge de polarització elevats per aconseguir una bona sensibilitat. A més, tot i que a la literatura hi podem trobar dispositius amb rendiments i sofisticació excel·lents, encara existeix una manca de recerca en el circuit de condicionament, especialment de processat digital i control del llaç. Per altra banda, moltes publicacions depenen de processos de fabricació de MEMS fets a mida per fabricar els dispositius. Aquesta és la mateixa aproximació que s'utilitza actualment en la indústria dels MEMS, però té l'inconvenient que requereix processos de fabricació diferents pels MEMS i l’electrònica. Per tant, el cost de fabricació és alt i el rendiment del sensor queda afectat pels paràsits en la interfície entre els MEMS i l'electrònica. Aquesta tesi presenta solucions potencials a aquests problemes amb l'objectiu d'aplanar el camí a la comercialització de brúixoles electròniques MEMS basades en la força de Lorentz. En primer lloc, es proposa un circuit de condicionament complet en llaç tancat controlat digitalment. Aquest s'ha implementat amb components comercials, mentre que el control digital del llaç s'ha implementat en una FPGA, tot com una prova de concepte de la viabilitat i beneficis potencials que representa l'arquitectura proposada. El sistema presenta un soroll de 550 nT / vHz quan el MEMS està polaritzat amb 300 µArms i V = 1 V . En segon lloc, s'han dissenyat varis magnetòmetres CMOS-MEMS utilitzant la part BEOL dels processos CMOS estàndard de TSMC i SMIC 180 nm, que després s'han alliberat amb líquid i gas. La mesura i caracterització dels dispositius s’ha utilitzat per analitzar els beneficis i inconvenients de cada disseny i procés d’alliberament. D'aquesta manera, s'ha pogut realitzar un anàlisi de la viabilitat de la seva fabricació en massa. S'han obtingut valors de yield de fins al 86% per un dispositiu fabricat amb SMIC 180 nm en una oblia completa, amb una sensibilitat de 2.82 fA/µT · mA i un factor de qualitat Q = 7.29 a pressió ambient. Per altra banda, el dispositiu fabricat amb TSMC 180 nm presenta una Q = 634.5 i una sensibilitat de 20.26 fA/µT · mA a 1 mbar amb V = 1 V. Finalment, s'ha dissenyat un circuit integrat que conté tots els blocs per a realitzar el condicionament de senyal del MEMS. El MEMS i l'electrònica s'han fabricat en el mateix dau amb el procés estàndard de TSMC 180 nm per tal de reduir paràsits i millorar el soroll i el consum de corrent. Les simulacions mostren una resolució de 8.23 µT /mA amb V = 1 V i BW = 10 Hz pel dispositiu dissenyat.