2020
DOI: 10.1016/j.future.2019.07.053
|View full text |Cite
|
Sign up to set email alerts
|

A machine learning approach for packet loss prediction in science flows

Abstract: Science networks and their hosted applications require large and frequent data transfers, but these transfers are subject to network performance degradation, including queuing delays and packet drops. However, well known network dynamics along with limited instrumentation access complicate the creation of an accurate method that predicts different performance aspects of data transfers. In this study, we develop a lightweight machine learning tool to predict end-to-end packet retransmission in science flows of … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
4
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
5
4
1

Relationship

1
9

Authors

Journals

citations
Cited by 16 publications
(5 citation statements)
references
References 20 publications
(17 reference statements)
0
4
0
1
Order By: Relevance
“…In this study, we use the RandomForestRegressor (RF Regressor) toolbox from Python's sklearn package (Pedregosa et al, 2011). Some examples using RF approach include Giannakou et al (2020), Mital et al (2020), Stockman et al (2019), andOppel andSchumann (2020).…”
Section: Random Forestmentioning
confidence: 99%
“…In this study, we use the RandomForestRegressor (RF Regressor) toolbox from Python's sklearn package (Pedregosa et al, 2011). Some examples using RF approach include Giannakou et al (2020), Mital et al (2020), Stockman et al (2019), andOppel andSchumann (2020).…”
Section: Random Forestmentioning
confidence: 99%
“…Já no contexto específico de previsão de falhas em redes, diferentes aplicac ¸ões e abordagens foram empregadas. Em [Giannakou et al 2020], explora-se o problema de previsão de retransmissão de pacotes em fluxos TCP relacionados a transferências de dados acadêmicos no NERSC (National Energy Research Scientific Computing Center). Com um modelo relativamente simples (Florestas Aleatórias) e vetores de características inerentes ao fluxos TCP, os autores obtiveram acurácia quase perfeita.…”
Section: Trabalhos Relacionadosunclassified
“…[1]. Giannakou et al used Random Forest Regression to process tstat logs and predict packet retransmission rate [2].…”
Section: Related Workmentioning
confidence: 99%