2021
DOI: 10.1038/s41598-021-98230-2
|View full text |Cite
|
Sign up to set email alerts
|

A machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north‐central United States

Abstract: Foliar fungicide usage in soybeans in the north-central United States increased steadily over the past two decades. An agronomically-interpretable machine learning framework was used to understand the importance of foliar fungicides relative to other factors associated with realized soybean yields, as reported by growers surveyed from 2014 to 2016. A database of 2738 spatially referenced fields (of which 30% had been sprayed with foliar fungicides) was fit to a random forest model explaining soybean yield. Lat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
references
References 45 publications
0
0
0
Order By: Relevance