Rigorous radiotherapy quality surveillance and comprehensive outcome assessment require electronic capture and automatic abstraction of clinical, radiation treatment planning, and delivery data. We present the design and implementation framework of an integrated data abstraction, aggregation, and storage, curation, and analytics software: the Health Information Gateway and Exchange (HINGE), which collates data for cancer patients receiving radiotherapy. The HINGE software abstracts structured DICOM-RT data from the treatment planning system (TPS), treatment data from the treatment management system (TMS), and clinical data from the electronic health records (EHRs). HINGE software has disease site-specific "Smart" templates that facilitate the entry of relevant clinical information by physicians and clinical staff in a discrete manner as part of the routine clinical documentation.Radiotherapy data abstracted from these disparate sources and the smart templates are processed for quality and outcome assessment. The predictive data analyses are done on using well-defined clinical and dosimetry quality measures defined by disease site experts in radiation oncology. HINGE application software connects seamlessly to the local IT/medical infrastructure via interfaces and cloud services and performs data extraction and aggregation functions without human intervention. It provides tools to assess variations in radiation oncology practices and outcomes and determines gaps in radiotherapy quality delivered by each provider. K E Y W O R D S big data in radiation oncology, quality surveillance 1 | INTRODUCTION Advanced technologies in health care are bringing a sharper focus on clinical outcome assessment and the assessment of health care quality. Manual abstraction, collation, and subsequent analysis of health care quality from patient treatment and outcome data are onerous, expensive, and impractical. Advances in computer storage, computing power, and the ability to electronically mine data from disparate sources (e.g., demographics, genetics, imaging, treatment, clinical decisions, and outcomes) have enabled big data research in medicine. The evolution of several initiatives in the realm of interconnectivity of health care data sources and the availability of advanced computing frameworks have opened doors for answering a broad array of questions related to quality, safety, and outcomes of