A major challenge in eukaryotic cell biology is to understand the roles of individual proteins and the subcellular compartments in which they reside. Here, we use the localization of organelle proteins by isotope tagging technique to complete the first proteomic analysis of the major organelles of the DT40 lymphocyte cell line. This cell line is emerging as an important research tool because of the ease with which gene knockouts can be generated. We identify 1090 proteins through the analysis of preparations enriched for integral membrane or soluble and peripherally associated proteins and localize 223 proteins to the endoplasmic reticulum, Golgi, lysosome, mitochondrion, or plasma membrane by matching their density gradient distributions to those of known organelle residents. A striking finding is that within the secretory and The chicken pre-B cell line DT40 exhibits a remarkably high ratio of targeted to random integration for transfected DNA constructs. This property is unusual in vertebrate cell lines and enables targeted gene disruption experiments to be carried out with relative ease (1). Consequently, DT40 has become a major research tool for the molecular dissection of a wide range of cellular and biochemical mechanisms in a vertebrate context, including membrane traffic, signal transduction, and cell cycle (2).Proteins in eukaryotic cells are organized according to their functions within a dynamic network of membranes. Localization is therefore paramount in assigning functions to uncharacterized proteins and understanding the processes occurring in subcellular compartments. An increased knowledge of the protein localization within the DT40 cell line would be of great value. Traditional localization methods such as immunofluorescence microscopy are typically low throughput and are more suitably applied to the study of specific proteins of interest rather than the cataloguing of large numbers of proteins. Recent developments in proteomics have made it possible to analyze the protein composition of organelles using a variety of different approaches. Several groups have utilized label-free quantitative proteomics in the high throughput assignment of proteins to subcellular compartments. In one approach, protein correlation profiling, proteins from enriched organelle fractions are quantified by peptide ion intensity measurements (3, 4). Other similar methods employ quantitation by spectral counting, recording the number of ions detected per protein (5, 6). Localization of organelle proteins by isotope tagging (LOPIT) 1 is a complementary approach, which employs isotope labeling for quantitation (7-9). Rather than processing each sample separately as in label-free techniques, differentially labeled fractions are pooled early in the LOPIT protocol. This has the important advantage of reducing the points at which variation might be introduced into the data.LOPIT begins with the partial separation of organelles by density gradient centrifugation and relies on the assumption that proteins from each organelle c...