Nanoimprint lithography (NIL) is one of the most prominent bottom-up techniques for duplicating nanostructures with a high throughput. However, fabrication of starting master mold commonly requires expensive equipment of top-down techniques, or additional steps to transfer the fabricated patterns from bottom-up methods. Here we demonstrate that a SiO nanostructure manufactured from a self-assembled block copolymer, polystyrene-b-polydimethylsiloxane (PS-b-PDMS), directly serves as a master mold for NIL without further modification. A hexagonally aligned pattern over the entire substrate is established using a simple technique; solvent annealing and etching. Etching also plays an important role in endowing fluorine on the surface of SiO, thus promoting smooth demolding upon imprinting. The obtained pattern of the SiO nanostructure is transferred to a polymer surface using UV nanoimprint. Identical patterns of the SiO nanostructure are elaborately reproduced on Ni and Cu nanodot arrays via electroplating on the polymer transcript, which was verified by morphological observations. The uniformity of the replicated Ni nanodot array is evaluated using spectroscopic ellipsometry. The measured optical response of the Ni nanodot is validated by electromagnetically simulated results, indicating that the pattern transfer is not limited to a small local area. In addition, the durability of the SiO mold pattern is corroborated after the imprinting process, thus guaranteeing the reusability of the fabricated nanostructure as a master mold. The proposed approach does not require any high-end lithographic techniques; this may result in significant cost and time reductions in future nanofabrication.