Manga (Japanese comics) are popular worldwide. However, current e-manga archives offer very limited search support, including keyword-based search by title or author, or tag-based categorization. To make the manga search experience more intuitive, efficient, and enjoyable, we propose a contentbased manga retrieval system. First, we propose a manga-specific image-describing framework. It consists of efficient margin labeling, edge orientation histogram feature description, and approximate nearest-neighbor search using product quantization. Second, we propose a sketch-based interface as a natural way to interact with manga content. The interface provides sketchbased querying, relevance feedback, and query retouch. For evaluation, we built a novel dataset of manga images, Manga109, which consists of 109 comic books of 21,142 pages drawn by professional manga artists. To the best of our knowledge, Manga109 is currently the biggest dataset of manga images available for research. We conducted a comparative study, a localization evaluation, and a large-scale qualitative study. From the experiments, we verified that: (1) the retrieval accuracy of the proposed method is higher than those of previous methods;(2) the proposed method can localize an object instance with reasonable runtime and accuracy; and (3) sketch querying is useful for manga search.
Platelets are known to store a large amount of the bioactive lipid molecule sphingosine 1-phosphate (S1P) and to release it into the plasma in a stimuli-dependent manner. Erythrocytes can also release S1P, independently from any stimuli. We measured the S1P and sphingosine (Sph) levels in erythrocytes by HPLC and found that the contribution of erythrocyte S1P to whole blood S1P levels is actually higher than that of platelets. In vitro assays demonstrated that erythrocytes possess much weaker Sph kinase activity compared to platelets but lack the S1P-degrading activities of either S1P lyase or S1P phosphohydrolase. This combination may enable erythrocytes to maintain a high S1P content relative to Sph. The absence of both S1P-degrading enzymes has not been reported for other cell types. Thus, erythrocytes may be specialized cells for storing and supplying plasma S1P.
Vanadium dioxide (VO2) exhibits a phase-change behavior from the insulating state to the metallic state around 340 K. By using this effect, we experimentally demonstrate a radiative thermal rectifier in the far-field regime with a thin film VO2 deposited on the silicon wafer. A rectification contrast ratio as large as two is accurately obtained by utilizing a one-dimensional steady-state heat flux measurement system. We develop a theoretical model of the thermal rectifier with optical responses of the materials retrieved from the measured mid-infrared reflection spectra, which is cross-checked with experimentally measured heat flux. Furthermore, we tune the operating temperatures by doping the VO2 film with tungsten (W). These results open up prospects in the fields of thermal management and thermal information processing.
Cadherins are major cell ± cell adhesion molecules in both tumor and normal tissues. Although serum levels of soluble E-cadherin have been shown to be higher in the cancer patients than in healthy volunteers, the detail mechanism regulating release of soluble E-cadherin remains to be elucidated. Here we show that the ectodomain of E-cadherin is proteolytically cleaved from some cancer cells by a membrane-bound metalloprotease to yield soluble form, and the residual membranetethered cleavage product is subsequently degraded by intracellular proteolytic pathway. Futhermore, we show that extracellular calcium in¯ux, that is induced by mechanical scraping of cells or ionomycin treatment, enhances the metalloprotease-mediated E-cadherin cleavage and the subsequent degradation of the cytoplasmic domain. Immunocytochemical analysis demonstrates that the sequential proteolysis of E-cadherin triggered by the calcium in¯ux results in translocation of b-catenin from the cell ± cell contacts to cytoplasm. Our data suggest that calcium in¯ux-induced proteolysis of E-cadherin not only disrupts the cell ± cell adhesion but also activates bcatenin-mediated intracellular signaling pathway, potentially leading to alterations in motility and proliferation activity of cells.
Dynamic control of electromagnetic heat transfer without changing mechanical configuration opens possibilities in intelligent thermal management in nanoscale systems. We confirmed by experiment that the radiative heat transfer is dynamically modulated beyond the blackbody limit. The near-field electromagnetic heat exchange mediated by phonon-polariton is controlled by the metal-insulator transition of tungsten-doped vanadium dioxide. The functionalized heat flux is transferred over an area of 1.6 cm across a 370 nm gap, which is maintained by the microfabricated spacers and applied pressure. The uniformity of the gap is validated by optical interferometry, and the measured heat transfer is well modeled as the sum of the radiative and the parasitic conductive components. The presented methodology to form a nanometric gap with functional heat flux paves the way to the smart thermal management in various scenes ranging from highly integrated systems to macroscopic apparatus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.