Manga (Japanese comics) are popular worldwide. However, current e-manga archives offer very limited search support, including keyword-based search by title or author, or tag-based categorization. To make the manga search experience more intuitive, efficient, and enjoyable, we propose a contentbased manga retrieval system. First, we propose a manga-specific image-describing framework. It consists of efficient margin labeling, edge orientation histogram feature description, and approximate nearest-neighbor search using product quantization. Second, we propose a sketch-based interface as a natural way to interact with manga content. The interface provides sketchbased querying, relevance feedback, and query retouch. For evaluation, we built a novel dataset of manga images, Manga109, which consists of 109 comic books of 21,142 pages drawn by professional manga artists. To the best of our knowledge, Manga109 is currently the biggest dataset of manga images available for research. We conducted a comparative study, a localization evaluation, and a large-scale qualitative study. From the experiments, we verified that: (1) the retrieval accuracy of the proposed method is higher than those of previous methods;(2) the proposed method can localize an object instance with reasonable runtime and accuracy; and (3) sketch querying is useful for manga search.
We have created Manga109, a dataset of a variety of 109 Japanese comic books publicly available for use for academic purposes. This dataset provides numerous comic images but lacks the annotations of elements in the comics that are necessary for use by machine learning algorithms or evaluation of methods. In this paper, we present our ongoing project to build metadata for Manga109. We first define the metadata in terms of frames, texts and characters. We then present our web-based software for efficiently creating the ground truth for these images. In addition, we provide a guideline for the annotation with the intent of improving the quality of the metadata.
Diffusion is commonly used as a ranking or re-ranking method in retrieval tasks to achieve higher retrieval performance, and has attracted lots of attention in recent years. A downside to diffusion is that it performs slowly in comparison to the naive k-NN search, which causes a non-trivial online computational cost on large datasets. To overcome this weakness, we propose a novel diffusion technique in this paper. In our work, instead of applying diffusion to the query, we precompute the diffusion results of each element in the database, making the online search a simple linear combination on top of the k-NN search process. Our proposed method becomes 10∼ times faster in terms of online search speed. Moreover, we propose to use late truncation instead of early truncation in previous works to achieve better retrieval performance.
Scene text recognition (STR) task has a common practice: All state-of-the-art STR models are trained on large synthetic data. In contrast to this practice, training STR models only on fewer real labels (STR with fewer labels) is important when we have to train STR models without synthetic data: for handwritten or artistic texts that are difficult to generate synthetically and for languages other than English for which we do not always have synthetic data. However, there has been implicit common knowledge that training STR models on real data is nearly impossible because real data is insufficient. We consider that this common knowledge has obstructed the study of STR with fewer labels. In this work, we would like to reactivate STR with fewer labels by disproving the common knowledge. We consolidate recently accumulated public real data and show that we can train STR models satisfactorily only with real labeled data. Subsequently, we find simple data augmentation to fully exploit real data. Furthermore, we improve the models by collecting unlabeled data and introducing semi-and self-supervised methods. As a result, we obtain a competitive model to state-of-the-art methods. To the best of our knowledge, this is the first study that 1) shows sufficient performance by only using real labels and 2) introduces semi-and self-supervised methods into STR with fewer labels. Our code and data are available: https: //github.com/ku21fan/STR-Fewer-Labels.Recently, public real data has been sufficiently accumulated to train STR models, as shown in Figure 1. We consolidate the training set of public real datasets from 2011 to 2019. Table 1 lists datasets. Figure 3 shows the examples of word boxes. Before using the original data directly for training, we conduct some preprocessing on datasets for our task. We summarize the processes in §3.3, and details are in the supplementary materials.
Manga, or comics, which are a type of multimodal artwork, have been left behind in the recent trend of deep learning applications because of the lack of a proper dataset. Hence, we built Manga109, a dataset consisting of a variety of 109 Japanese comic books (94 authors and 21,142 pages) and made it publicly available by obtaining author permissions for academic use. We carefully annotated the frames, speech texts, character faces, and character bodies; the total number of annotations exceeds 500k. This dataset provides numerous manga images and annotations, which will be beneficial for use in machine learning algorithms and their evaluation. In addition to academic use, we obtained further permission for a subset of the dataset for industrial use. In this article, we describe the details of the dataset and present a few examples of multimedia processing applications (detection, retrieval, and generation) that apply existing deep learning methods and are made possible by the dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.