Deep neural networks (DNNs) trained on large-scale datasets have exhibited significant performance in image classification. Many large-scale datasets are collected from websites, however they tend to contain inaccurate labels that are termed as noisy labels. Training on such noisy labeled datasets causes performance degradation because DNNs easily overfit to noisy labels. To overcome this problem, we propose a joint optimization framework of learning DNN parameters and estimating true labels. Our framework can correct labels during training by alternating update of network parameters and labels. We conduct experiments on the noisy CIFAR-10 datasets and the Clothing1M dataset. The results indicate that our approach significantly outperforms other state-of-the-art methods.
Can we detect common objects in a variety of image domains without instance-level annotations? In this paper, we present a framework for a novel task, cross-domain weakly supervised object detection, which addresses this question. For this paper, we have access to images with instance-level annotations in a source domain (e.g., natural image) and images with image-level annotations in a target domain (e.g., watercolor). In addition, the classes to be detected in the target domain are all or a subset of those in the source domain. Starting from a fully supervised object detector, which is pre-trained on the source domain, we propose a two-step progressive domain adaptation technique by fine-tuning the detector on two types of artificially and automatically generated samples. We test our methods on our newly collected datasets 1 containing three image domains, and achieve an improvement of approximately 5 to 20 percentage points in terms of mean average precision (mAP) compared to the best-performing baselines.
Manga (Japanese comics) are popular worldwide. However, current e-manga archives offer very limited search support, including keyword-based search by title or author, or tag-based categorization. To make the manga search experience more intuitive, efficient, and enjoyable, we propose a contentbased manga retrieval system. First, we propose a manga-specific image-describing framework. It consists of efficient margin labeling, edge orientation histogram feature description, and approximate nearest-neighbor search using product quantization. Second, we propose a sketch-based interface as a natural way to interact with manga content. The interface provides sketchbased querying, relevance feedback, and query retouch. For evaluation, we built a novel dataset of manga images, Manga109, which consists of 109 comic books of 21,142 pages drawn by professional manga artists. To the best of our knowledge, Manga109 is currently the biggest dataset of manga images available for research. We conducted a comparative study, a localization evaluation, and a large-scale qualitative study. From the experiments, we verified that: (1) the retrieval accuracy of the proposed method is higher than those of previous methods;(2) the proposed method can localize an object instance with reasonable runtime and accuracy; and (3) sketch querying is useful for manga search.
In this paper, we apply a convolutional neural network (CNN) to the tasks of detecting and recognizing food images. Because of the wide diversity of types of food, image recognition of food items is generally very difficult. However, deep learning has been shown recently to be a very powerful image recognition technique, and CNN is a state-of-the-art approach to deep learning. We applied CNN to the tasks of food detection and recognition through parameter optimization. We constructed a dataset of the most frequent food items in a publicly available food-logging system, and used it to evaluate recognition performance. CNN showed significantly higher accuracy than did traditional support-vectormachine-based methods with handcrafted features. In addition, we found that the convolution kernels show that color dominates the feature extraction process. For food image detection, CNN also showed significantly higher accuracy than a conventional method did.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.