This contribution presents the extensions of beam-to-beam and beam-inside-beam contact schemes of the same authors towards frictional interactions. Since the schemes are based on the beams' true surfaces (instead of surfaces implicitly deduced from the beams' centroid lines), the presented enhancements are not only able to account for frictional sliding in the beams' axial directions, but also in the circumferential directions. Both the frictional beam-to-beam approach as well as the frictional beam-inside-beam approach are applicable to shear-deformable and shear-undeformable beams, as well as to beams with both circular and elliptical cross-sections (although the cross-sections must be rigid). A penalty formulation is used to treat unilateral and frictional contact constraints. FE implementation details are discussed, where automatic differentiation techniques are used to derive the implementations. Simulations involving large sliding displacements and large deformations are presented for both beam-to-beam and beam-inside-beam schemes. All simulation results are compared with those of the frictionless schemes. K E Y W O R D S beam contact, beam-inside-beam contact, beam-to-beam contact, Coulomb's law, friction This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.