Usually when a large internal fluid pressure acts on the inner walls of flexible pipes, the carcass layer is not loaded, as the first internal pressure resistance is given by the internal polymeric layer that transmits almost all the loading to the metallic pressure armor layer. The last one must be designed to ensure that the flexible pipe will not fail when loaded by a defined value of internal pressure. This paper presents three different numerical models and an analytical nonlinear model for determining the maximum internal pressure loading withstood by a flexible pipe without burst. The first of the numerical models is a ring approximation for the helically rolled pressure layer, considering its actual cross section profile. The second one is a full model for the same structure, considering the pressure layer laying angle and the cross section as built. The last numerical model is a two-dimensional (2D) simplified version, considering the pressure layer as an equivalent ring. The first two numerical models consider contact nonlinearities and a nonlinear elastic-plastic material model for the pressure layer. The analytical model considers the pressure armor layer as an equivalent ring, taking into account geometrical and material nonlinear behaviors. Assumptions and results for each model are compared and discussed. The failure event and the corresponding stress state are commented.
The total wind power capacity installed in the world has substantially grown during the last few years, mainly due to the increasing number of horizontal axis wind turbines (HAWT). Consequently, a big effort was employed to increase HAWT's power capacity, which is directly associated to the size of blades. Then, novel designs of blades may lead to very flexible structures, susceptive to large deformation, not only during extreme events, but also for operational conditions. In this context, this thesis aims to compare two geometrically nonlinear structural modeling approaches that handle large deformation of blade structures: 3D geometrically-exact beam and shell finite element models. Regarding the beam model, due to geometric complexity of typical cross-sections of wind turbine blades it is adopted a theory that allows creation of arbitrary multicellular cross-sections. Two typical blade geometries are tested, and comparisons between the models are done in statics and dynamics, always inducing large deformation and exploring the accuracy limits of beam models, when compared to shells. Results showed that the beam and shell models present very similar behavior, except when violations occur on the beam formulation hypothesis, such as when shell local buckling phenomena takes place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.