Coronavirus disease (COVID-19) cases and COVID-19-related deaths have been increasing worldwide since the outbreak in 2019. Before the mass vaccination campaign for COVID-19, the main methods for COVID-19 control in China were mass testing and quarantine. Based on the transmission mechanism of COVID-19, we constructed a dynamic model for COVID-19 transmission in two typical regions: Beijing and Xinjiang. We calculated the basic reproduction number
R
0
, proved the global stability of COVID-19 transmission via the Lyapunov function technique, and introduced the final size. We assessed the effectiveness of mass testing and quarantine. Sensitivity analysis indicated that the more the people were tested per day, the larger is the quarantine proportionality coefficient, the earlier the source location was determined, and the better is the controlling effect. In addition, it was more effective to increase the coefficient of quarantine if the population density in the region was low. To eliminate the pandemic, the government has to expand testing and quarantine, requiring a large amount of continuous manpower, material, and financial resources. Therefore, new control measures should be developed.