2018
DOI: 10.1177/0020720918780843
|View full text |Cite
|
Sign up to set email alerts
|

A MATLAB-based biomedical signal de-noising applied to digital signal processing course for third-year students

Abstract: Signal de-noising is one of the major topics of engineering application covered in an undergraduate-level digital signal processing course. Generally speaking, it involves a number of tedious concepts that have intrinsic physical meaning, which is difficult for students to understand . In this paper, an educational method using diaphragmatic electromyographic (EMGdi) as the de-noising object, which runs on the MATLAB software, has been developed for the convenience of learning and understanding for three-years… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
11
0
4

Year Published

2019
2019
2024
2024

Publication Types

Select...
5
1

Relationship

0
6

Authors

Journals

citations
Cited by 13 publications
(15 citation statements)
references
References 10 publications
0
11
0
4
Order By: Relevance
“…The frequency bands interface (Figure 15) filters the EEG data into the five frequency bands corresponding to; delta (0-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30), and gamma (30-100 Hz) by using a second-order IIR Butterworth band-pass filter [24]. Before the EEG signals are separated into frequency bands, 50 Hz power line noise is removed with the band-stop filter, and baseline drift noise is removed with the high-pass filter in the Filter Interface.…”
Section: Frequency Bands Interfacementioning
confidence: 99%
See 1 more Smart Citation
“…The frequency bands interface (Figure 15) filters the EEG data into the five frequency bands corresponding to; delta (0-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)(24)(25)(26)(27)(28)(29)(30), and gamma (30-100 Hz) by using a second-order IIR Butterworth band-pass filter [24]. Before the EEG signals are separated into frequency bands, 50 Hz power line noise is removed with the band-stop filter, and baseline drift noise is removed with the high-pass filter in the Filter Interface.…”
Section: Frequency Bands Interfacementioning
confidence: 99%
“…Students gained significant experience in biomedical amplifier design, data analysis, mobile phone communication, and interface design [3]. Luo developed an experimental application to filter the ECG signal from diaphragm EMG signals for use by students taking the digital signal processing course [22]. Nonclercq et al created a virtual data collection application to teach data acquisition for EEG data.…”
Section: Introductionmentioning
confidence: 99%
“…Signal de-noising is one of the major topics of telecommunication application covered in an undergraduate-level digital signal processing course, and it involves a number of tedious concepts which can be difficult for students to understand. Luo [10] implemented an educational method which runs on the Matlab and classroom experience in the Nanfang College of Sun Yat-sen University has shown that the developed method helps in consolidating a better understanding of signal de-noising processing in digital signal processing course.…”
Section: Literature Overviewmentioning
confidence: 99%
“…Pada artikel ini akan dikembangkan penggunakan filter IIR pada data sinyal pernapasan EMGdi pernah dilakukan pada [2] dengan membandingkan segi keefektifan filter dengan menggunakan filter FIR. Berdasarkan [3][4] filter FIR mampu menghilangkan noise pada pengaplikasian sinyal ECG karena memiliki properti fasa yang linear dan karakteristik yang stabil serta mampu meningkatkan kecepatan kalkulasi filter sebesar 13,65%.…”
Section: Pendahuluanunclassified
“…Berdasarkan [3][4] filter FIR mampu menghilangkan noise pada pengaplikasian sinyal ECG karena memiliki properti fasa yang linear dan karakteristik yang stabil serta mampu meningkatkan kecepatan kalkulasi filter sebesar 13,65%. Oleh karena itu, artikel ini akan mencoba mengaplikasikan penelitian [2] dengan menggunakan filter FIR dan melihat apakah keefektifan filter tersebut juga berlaku ketika diaplikasikan pada sinyal EMGdi dengan menggunakan Signal-to-Noise Ratio (SNR), execution time, serta zero-pole diagram kedua filter.…”
Section: Pendahuluanunclassified