“…Various MEMS concepts for optical path-length scanning have been reported, typically targeting an out-of-plane translation with large stroke required for the classical dual-beam Michelson interferometer FTS set-up, consisting of fixed and moving mirrors (here realized by an MOEMS) and an optical beam splitter. For large-stroke out-of-plane translation of the MEMS mirror, different actuation principles have been investigated so far: electrostatic [ 5 , 6 , 7 , 8 ], piezoelectric [ 9 , 10 , 11 ], magnetic [ 12 , 13 , 14 , 15 ], and electrothermal [ 16 , 17 , 18 , 19 , 20 , 21 , 22 ], typically using resonant operation for larger strokes, e.g., [ 7 , 8 , 11 ], but also using quasi-static actuation, e.g., [ 10 , 17 ]. Most of these different MOEMS actuation mechanisms suffer from limitations in spectral resolution due to parasitic effects of MEMS-based path-length modulation: first of all, mirror tilt [ 11 , 17 , 19 ], deformation of the mirror due to dynamically (owing to inertia) or statically (due to mirror suspension or optical coating) induced mechanical stress.…”