Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Due to the presence of numerous surface defects, the inadequate contrast between defective and non-defective regions, and the resemblance between noise and subtle defects, edge detection poses a significant challenge in dimensional error detection, leading to increased dimensional measurement inaccuracies. These issues serve as major bottlenecks in the domain of automatic detection of high-precision metal parts. To address these challenges, this research proposes a combined approach involving the utilization of the YOLOv6 deep learning network in conjunction with metal lock body parts for the rapid and accurate detection of surface flaws in metal workpieces. Additionally, an enhanced Canny–Devernay sub-pixel edge detection algorithm is employed to determine the size of the lock core bead hole. The methodology is as follows: The data set for surface defect detection is acquired using the labeling software lableImg and subsequently utilized for training the YOLOv6 model to obtain the model weights. For size measurement, the region of interest (ROI) corresponding to the lock cylinder bead hole is first extracted. Subsequently, Gaussian filtering is applied to the ROI, followed by a sub-pixel edge detection using the improved Canny–Devernay algorithm. Finally, the edges are fitted using the least squares method to determine the radius of the fitted circle. The measured value is obtained through size conversion. Experimental detection involves employing the YOLOv6 method to identify surface defects in the lock body workpiece, resulting in an achieved mean Average Precision (mAP) value of 0.911. Furthermore, the size of the lock core bead hole is measured using an upgraded technique based on the Canny–Devernay sub-pixel edge detection, yielding an average inaccuracy of less than 0.03 mm. The findings of this research showcase the successful development of a practical method for applying machine vision in the realm of the automatic detection of metal parts. This achievement is accomplished through the exploration of identification methods and size-measuring techniques for common defects found in metal parts. Consequently, the study establishes a valuable framework for effectively utilizing machine vision in the field of metal parts inspection and defect detection.
Due to the presence of numerous surface defects, the inadequate contrast between defective and non-defective regions, and the resemblance between noise and subtle defects, edge detection poses a significant challenge in dimensional error detection, leading to increased dimensional measurement inaccuracies. These issues serve as major bottlenecks in the domain of automatic detection of high-precision metal parts. To address these challenges, this research proposes a combined approach involving the utilization of the YOLOv6 deep learning network in conjunction with metal lock body parts for the rapid and accurate detection of surface flaws in metal workpieces. Additionally, an enhanced Canny–Devernay sub-pixel edge detection algorithm is employed to determine the size of the lock core bead hole. The methodology is as follows: The data set for surface defect detection is acquired using the labeling software lableImg and subsequently utilized for training the YOLOv6 model to obtain the model weights. For size measurement, the region of interest (ROI) corresponding to the lock cylinder bead hole is first extracted. Subsequently, Gaussian filtering is applied to the ROI, followed by a sub-pixel edge detection using the improved Canny–Devernay algorithm. Finally, the edges are fitted using the least squares method to determine the radius of the fitted circle. The measured value is obtained through size conversion. Experimental detection involves employing the YOLOv6 method to identify surface defects in the lock body workpiece, resulting in an achieved mean Average Precision (mAP) value of 0.911. Furthermore, the size of the lock core bead hole is measured using an upgraded technique based on the Canny–Devernay sub-pixel edge detection, yielding an average inaccuracy of less than 0.03 mm. The findings of this research showcase the successful development of a practical method for applying machine vision in the realm of the automatic detection of metal parts. This achievement is accomplished through the exploration of identification methods and size-measuring techniques for common defects found in metal parts. Consequently, the study establishes a valuable framework for effectively utilizing machine vision in the field of metal parts inspection and defect detection.
This paper describes a practice-based methodology applied to roundness and cylindricity concepts. Traditionally, technicians encounter difficulties in understanding this topic, especially when they analyze the tolerances involved due to the complexity of their graphic interpretation. Additionally, it is mandatory for industrial engineers to acquire competencies that allow them to validate form and make decisions in this field. With the goal of enhancing the handling of measurement techniques involved in this topic and analyzing the results obtained, a methodology has been designed to address the roundness and cylindricity tolerance evaluation from different perspectives. Firstly, based on a conceptual analysis, an analytical procedure is introduced. Secondly, an engaging manual practice is implemented by using simple measuring instruments that allow the user to be involved in the development of the procedure applied. The conditions that tried to optimize the manual procedure to get good results were analyzed. Moreover, the results obtained under this perspective allow us to ensure that better skills can be acquired regarding the typical method based on the coordinate measuring machines. This experience has been validated based on the practice with ongoing users under a training period.
Aiming at addressing the problem of the online detection of automobile brake piston components, a non-contact measurement method based on the combination of machine vision and image processing technology is proposed. Firstly, an industrial camera is used to capture an image, and a series of image preprocessing algorithms is used to extract a clear contour of a test piece with a unit pixel width. Secondly, based on the structural characteristics of automobile brake piston components, the region of interest is extracted, and the test piece is segmented into spring region and cylinder region. Then, based on mathematical morphology techniques, the edges of the image are optimized. We extract geometric feature points by comparing the heights of adjacent pixel points on both sides of the pixel points, so as to calculate the variation of the spring axis relative to the reference axis (centerline of the cylinder). Then, we extract the maximum variation from all images, and calculate the coaxiality error value using this maximum variation. Finally, we validate the feasibility of the proposed method and the stability of extracting geometric feature points through experiments. The experiments demonstrate the feasibility of the method in engineering practice, with the stability in extracting geometric feature points reaching 99.25%. Additionally, this method offers a new approach and perspective for coaxiality measurement of stepped shaft parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.