Neural retina from 8- to 9-day embryo chickens was grown in long-term cell culture in an experiment to test the hpothesis that one step during the in vitro transdifferentiation of neural retina into pigment cells occurs in response to stimulation of tricarboxylic acid (TCA) cycle activity. Time-lapse photography showed that pigment-cell formation occurs through the intermediate stages of ‘undistinguished cells’, ‘pavement epithelium’ and ‘potential pigment cells’. Mitosis of undistinguished cells to pavement epithelium was proportional to malonate over most of the tested range of concentrations and was inhibited by succinate, which respectively depress and stimulate the TCA cycle. Conversely mitosis of pavement epithelium to potential pigment cells occurred in proportion to succinate concentration over most of the tested range and was inhibited by malonate, in support of the hypothesis under test.
Melanin synthesis begins in a minority of ‘pigment leader cells’ uniquely stimulated by the lowest concentration of malonate, although higher concentrations blocked pigment synthesis in all cell types. The pigment leader cells appear to act as centres of influence upon neighbouring potential pigment cells, which subsequently also beome pigmented. Lactate inhibited most or all of the steps in formation of pigment epithelium.
Between three and five mitoses occur in the production of pigment cells, whereas multilayers and lentoid bodies seem to be formed by expansion of undistinguished cells, probably without mitosis.
The observations lead to a general theory that metaplastic conversion between cell types in eye tissues may require the physical isolation of overtly differentiated, multipotent cells from ‘leader’ cells which normally hold them in physiological subjugation.