How to determine highly effective and intuitive gesture sets for interactive systems tailored to end users’ preferences? A substantial body of knowledge is available on this topic, among which gesture elicitation studies stand out distinctively. In these studies, end users are invited to propose gestures for specific referents, which are the functions to control for an interactive system. The vast majority of gesture elicitation studies conclude with a consensus gesture set identified following a process of consensus or agreement analysis. However, the information about specific gesture sets determined for specific applications is scattered across a wide landscape of disconnected scientific publications, which poses challenges to researchers and practitioners to effectively harness this body of knowledge. To address this challenge, we conducted a systematic literature review and examined a corpus of N = 267 studies encompassing a total of 187,265 gestures elicited from 6,659 participants for 4,106 referents. To understand similarities in users’ gesture preferences within this extensive dataset, we analyzed a sample of 2,304 gestures extracted from the studies identified in our literature review. Our approach consisted of (i) identifying the context of use represented by end users, devices, platforms, and gesture sensing technology, (ii) categorizing the referents, (iii) classifying the gestures elicited for those referents, and (iv) cataloging the gestures based on their representation and implementation modalities. Drawing from the findings of this review, we propose guidelines for conducting future end-user gesture elicitation studies.