In a recent companion paper, a three-dimensional isotropic elastic micromechanical framework was developed to predict the mechanical behaviors of the innovative asphalt patching materials reinforced with a high-toughness, low-viscosity nanomolecular resin, dicyclopentadiene (DCPD), under the splitting tension test (ASTM D6931). By taking advantage of the previously proposed isotropic elastic-damage framework and considering the plastic behaviors of asphalt mastic, a class of elasto-damage-plastic model, based on a continuum thermodynamic framework, is proposed within an initial elastic strain energy-based formulation to predict the behaviors of the innovative materials more accurately. Specifically, the governing damage evolution is characterized through the effective stress concept in conjunction with the hypothesis of strain equivalence; the plastic flow is introduced by means of an additive split of the stress tensor. Corresponding computational algorithms are implemented into three-dimensional finite elements numerical simulations, and the outcomes are systemically compared with suitably designed experimental results.