The detection of multiple fluids using a single chip has been attracting attention recently. A TM02 quarter-mode substrate-integrated waveguide resonator designed at 5.81 GHz on RT/duroid 6010LM with a return loss of 13 dB and an unloaded quality factor of Q ≈ 13 generates two distinct strong electric fields that can be manipulated to simultaneously detect two chemicals. Two asymmetric channels engraved in a polydimethylsiloxane sheet are loaded with analyte to produce a unique resonance frequency in each case, regardless of the dielectric constants of the liquids. Keeping in view the nature of lossy liquids such as ethanol, the initial structure and channels are optimized to ensure a reasonable return loss even in the case of loading lossy liquids. After loading the empty channels, Q is evaluated as 43. Ethanol (E) and deionized water (DI) are simultaneously loaded to demonstrate the detection of all possible combinations: [Air, Air], [E, DI], [DI, E], [E, E], and [DI, DI]. The proposed structure is miniaturized while exhibiting a performance comparable to that of existing multichannel microwave chemical sensors.