2022
DOI: 10.1109/access.2022.3154825
|View full text |Cite
|
Sign up to set email alerts
|

A Mirror Environment to Produce Artificial Intelligence Training Data

Abstract: With the increasing maturity of artificial intelligence (AI) technology, business automation technology has also become a trend. Particularly, network operation and maintenance (O&M) is expected to soon become automated and more efficient. However, the automation of O&M is hindered by the lack of network failure data and the cost of collecting data. We thus propose an approach to build a low-cost environment that can produce the same data as the actual production environment and use tools such as chaos enginee… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 16 publications
0
1
0
1
Order By: Relevance
“…Namun, penelitian sebelumnya juga menunjukkan bahwa penggunaan teknologi dalam dunia pendidikan masih dihadapkan pada beberapa kendala, seperti biaya dan kurangnya pengetahuan tentang teknologi. Biaya dan kurangnya pengetahuan tentang teknologi masih menjadi kendala [7].…”
Section: Pendahuluanunclassified
“…Namun, penelitian sebelumnya juga menunjukkan bahwa penggunaan teknologi dalam dunia pendidikan masih dihadapkan pada beberapa kendala, seperti biaya dan kurangnya pengetahuan tentang teknologi. Biaya dan kurangnya pengetahuan tentang teknologi masih menjadi kendala [7].…”
Section: Pendahuluanunclassified
“…Fault-point estimation system applied to the environment to be used in other environments. For this purpose, we are developing an inter-environment transfer technology, which analyzes the differences between different network environments using the interoperability of NOIM, and converts training data, rules, and AI models for application in other environments [6]. Figure 3 illustrates the transfer of data, rules, and AI models between different environments.…”
Section: Rulesmentioning
confidence: 99%