1990
DOI: 10.1016/0020-7683(90)90060-9
|View full text |Cite
|
Sign up to set email alerts
|

A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

1
292
0
3

Year Published

1994
1994
2019
2019

Publication Types

Select...
6
2

Relationship

0
8

Authors

Journals

citations
Cited by 442 publications
(296 citation statements)
references
References 14 publications
1
292
0
3
Order By: Relevance
“…Both elements assume small nodal displacements and require a co-rotational or multi-body formulation for geometric nonlinear analysis. A beam element that directly permits large displacement analysis is the mixed variational formulation of Hodges [6].…”
Section: Introductionmentioning
confidence: 99%
“…Both elements assume small nodal displacements and require a co-rotational or multi-body formulation for geometric nonlinear analysis. A beam element that directly permits large displacement analysis is the mixed variational formulation of Hodges [6].…”
Section: Introductionmentioning
confidence: 99%
“…Moreover, an increase in flexibility of load carrying structures has been catalysed by the use of composite materials, which has required a parallel effort in developing geometrically-nonlinear composite beam models. Those are typically based on a two step procedure: first, a process of dimensional reduction (homogenisation) in which the three-dimensional composite structure is reduced to averaged properties along the reference line [1][2][3][4], and second the solution of the one-dimensional dynamic equations of motion on the homogenised structure (the composite beam) [5][6][7][8]. The literature on composite beam modelling is quite extensive and it is not the purpose here to present a comprehensive review, which can be found, for instance, in the monograph on the topic by Hodges [9].…”
Section: Introductionmentioning
confidence: 99%
“…Segundo Hodges (1990), as derivadas parciais da energia potencial e da energia cinética Cada variável está associada a um sistema de referência. Na modelagem da pá abordado nesse trabalho, todas as variáveis serão descritas no sistema de coordenadas a.…”
Section: Controle Ativounclassified
“…A deformação e a curvatura (Eqs. 3.6 e 3.7) geralmente são representados como um conjunto de polinômios que apresentam termos de deslocamento linear e orientação angular, levando a relações pesadas indesejáveis, que requerem a truncagem na representação dos termos de alta ordem geométrica (Hodges (1990)). Nesse caso, os multiplicadores de Lagrange são utilizados para transformar as relações cinemáticas em um conjunto de equações restritas com a utilização de rotações nitas virtuais.…”
Section: Controle Ativounclassified
See 1 more Smart Citation