The data model of the classical data warehouse (formally, dimensional model) does not offer comprehensive support for temporal data management. The underlying reason is that it requires consideration of several temporal aspects, which involve various time stamps. Also, transactional systems, which serves as a data source for data warehouse, have the tendency to change themselves due to changing business requirements. The classical dimensional model is deficient in handling changes to transaction sources. This has led to the development of various schemes, including evolution of data and evolution of data model and versioning of dimensional model. These models have their own strengths and limitations, but none fully satisfies the above-stated broad range of aspects, making it difficult to compare the proposed schemes with one another. This paper analyses the schemes that satisfy such challenging aspects faced by a data warehouse and proposes taxonomy for characterizing the existing models to temporal data management in data warehouse. The paper also discusses some open challenges.