“…The creep problem the same as the fatigue problem needs to be solved urgently. The model research of the creep problem can be divided into 3 directions: (1) The creep model [1][2][3] was established on the basis of the creep strain rate, which is the key parameter by considering the creep activation Nomenclature: a i , b i , c i , d i , parameters about η i ; f 1 , f 2 , f 3 , parameters about σ 0.2 (MPa); k M1 , k M2 , adjustable variables; t 1 , varying loading time in (σ 1 , T 1 ) (h); t 2 , varying loading time in (σ 2 , T 2 ) corresponding to t 1 (h); t c, 1 , t c, 2 , creep rupture time (h); t i , creep time at a certain creep strain (h); E, Young modulus (MPa); M1, the creep time satisfies the normal distribution; M2, the creep time satisfies the log-normal distribution; T, T 1 , T 2 , temperature (°C); T m , melting point (°C); S M1, i , S M2, i , the standard deviations of creep time at a certain creep strain (h); X M1;i ; X M2;i , the average creep time at a certain creep strain (h); ε, total strain (%); ε c , creep strain (%); ε p , plastic strain (%); θ, temperature (°C); η 1 / % , η 2 / % , η 3 / % , η 4 , η 5 , parameters in creep model; ζ, relative creep time; σ, σ 1 , σ 2 , net sectional stress (MPa); σ 0.2 , yield strength (MPa) energy. The advantage is with a clear physical meaning, but the disadvantage is the low calculation accuracy leading that it is not easy to be applied.…”