Preclinical drug development for human chronic lymphocytic leukemia (CLL) requires robust xenograft models recapitulating the entire spectrum of the disease, including all prognostic subgroups. Current CLL xenograft models are hampered by inefficient engraftment of good prognostic CLLs, overgrowth with co-transplanted T cells, and the need for allogeneic humanization or irradiation. Therefore, we aimed to establish an effective and reproducible xenograft protocol which allows engraftment of all CLL subtypes without the need of humanization or irradiation. Unmanipulated NOD.Cg-Prkdc scid Il2rg tm1Sug / JicTac (NOG) mice in contrast to C.Cg-Rag2 tm1Fwa-/-Il2rg tm1Sug / JicTac (BRG) mice allowed engraftment of all tested CLL subgroups with 100% success rate, if CLL cells were fresh, injected simultaneously intra-peritoneally and intravenously, and co-transferred with low fractions of autologous T cells (2%-4%). CLL transplanted NOG mice (24 different patients) developed CLL pseudofollicles in the spleen, which increased over 4-6 weeks, and were then limited by the expanding autologous T cells. Ibrutinib treatment studies were performed to validate our model, and recapitulated treatment responses seen in patients. In conclusion, we developed an easy-to-use CLL xenograft protocol which allows reliable engraftment for all CLL subgroups without humanization or irradiation of mice. This protocol can be widely used to study CLL biology and to explore novel drug candidates. others live for 20 years or more even without treatment [5]. Several prognostic markers such as Rai and Binet staging systems, immunoglobulin V H gene mutational status [6], ζ-associated protein 70 (ZAP70) expression [7,8], cytogenetic abnormalities [9], and gene mutations can be used to predict the survival outcome and the need for treatment of patients with CLL [10,11]. While del 17p or del 11q CLL samples are highly aggressive and resistant to many chemotherapeutic agents, del 13q14 or a normal karyotype are associated with a good prognosis. In vitro monocultures of CLL cells are limited, and can only be used for drug screens based on short term readouts [12]. Co-culture of CLL cells with nurse-like cells or BM-stroma derived cell lines can maintain CLL survival for several days [13,14], but none of the available in vitro culture systems allow long-term culture or proliferation of CLL cells, which limits the relevance of such models for testing novel drugs [15].Transgenic mouse models which show key features of human CLL have been developed by several groups to study the disease. The Eµ-TCL1 tg mouse model recapitulates many features of an aggressive CLL with increasing numbers of CD5+ CD19+ lymphocytes expanding in spleen, PB and BM leading to death of the mice within 1-1.5 years [16]. The double transgenic BCL-2:Traf2DN mouse model mimics refractory CLL and mice develop increased B cell counts with severe splenomegaly and lymphadenopathy by 6 months of age [17]. The cluster-deleted DLEU2/miR15a/16-1 replicates the deletion of the chromosomal region...