The primary problem needed to be solved in mining close coal seams is to understand quantitatively the floor failure depth of the upper coal seam. In this study, according to the mining and geological conditions of close coal seams (#10 and #11 coal seams) in the Second Mining Zone of Caocun Coal Mine, the mechanical model of floor failure of the upper coal seam was built. Calculation results show that the advanced abutment pressure caused by the mining of the upper coal seam, resulted in the floor failure depth with a maximum of 26.1 m, which is 2.8 times of the distance between two coal seams. On this basis, the mechanical model of the remaining protective coal pillar was established and the stress distribution status under the remaining protective coal pillar in the 10# coal seam was then theoretically analysed. Analysis results show that stress distribution under the remaining protective coal pillar was significantly heterogeneous. It was also determined that the interior staggering distance should be at least 4.6 m to arrange the gateways of the #209 island coalface in the lower coal seam. Taken into account a certain safety coefficient (1.6-1.7), as well as reducing the loss of coal resources, the reasonable interior staggering distance was finally determined as 7.5 m. Finally, a novel method using radon was initially proposed to detect the floor failure depth of the upper coal seam in mining close coal seams, which could overcome deficiencies of current research methods.