Despite decades of sustained effort, memory corruption attacks continue to be one of the most serious security threats faced today. They are highly sought after by attackers, as they provide ultimate control -the ability to execute arbitrary low-level code. Attackers have shown time and again their ability to overcome widely deployed countermeasures such as Address Space Layout Randomization (ASLR) and Data Execution Prevention (DEP) by crafting Return Oriented Programming (ROP) attacks. Although Turingcomplete ROP attacks have been demonstrated in research papers, real-world ROP payloads have had a more limited objective: that of disabling DEP so that injected native code attacks can be carried out. In this paper, we provide a systematic defense, called Control Flow and Code Integrity (CFCI), that makes injected native code attacks impossible. CFCI achieves this without sacrificing compatibility with existing software, the need to replace system programs such as the dynamic loader, and without significant performance penalty. We will release CFCI as open-source software by the time of this conference. * This work was completed when he was at Stony Brook University †
The majority of plant disease resistance (R) genes encode proteins that share common structural features. However, the transcription activator-like effector (TALE)-associated executor type R genes show no considerable sequence homology to any known R genes. We adopted a map-based cloning approach and TALE-based technology to isolate and characterize Xa23, a new executor R gene derived from wild rice (Oryza rufipogon) that confers an extremely broad spectrum of resistance to bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo). Xa23 encodes a 113 amino acid protein that shares 50% identity with the known executor R protein XA10. The predicted transmembrane helices in XA23 also overlap with those of XA10. Unlike Xa10, however, Xa23 transcription is specifically activated by AvrXa23, a TALE present in all examined Xoo field isolates. Moreover, the susceptible xa23 allele has an identical open reading frame of Xa23 but differs in promoter region by lacking the TALE binding element (EBE) for AvrXa23. XA23 can trigger a strong hypersensitive response in rice, tobacco, and tomato. Our results provide the first evidence that plant genomes have an executor R gene family of which members execute their function and spectrum of disease resistance by recognizing the cognate TALEs in the pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.