Predator-prey relationships provide a classic paradigm for the study of innate animal behavior. Odors from carnivores elicit stereotyped fear and avoidance responses in rodents, although sensory mechanisms involved are largely unknown. Here, we identified a chemical produced by predators that activates a mouse olfactory receptor and produces an innate behavioral response. We purified this predator cue from bobcat urine and identified it to be a biogenic amine, 2-phenylethylamine. Quantitative HPLC analysis across 38 mammalian species indicates enriched 2-phenylethylamine production by numerous carnivores, with some producing >3,000-fold more than herbivores examined. Calcium imaging of neuronal responses in mouse olfactory tissue slices identified dispersed carnivore odor-selective sensory neurons that also responded to 2-phenylethylamine. Two prey species, rat and mouse, avoid a 2-phenylethylamine odor source, and loss-of-function studies involving enzymatic depletion of 2-phenylethylamine from a carnivore odor indicate it to be required for full avoidance behavior. Thus, rodent olfactory sensory neurons and chemosensory receptors have the capacity for recognizing interspecies odors. One such cue, carnivore-derived 2-phenylethylamine, is a key component of a predator odor blend that triggers hard-wired aversion circuits in the rodent brain. These data show how a single, volatile chemical detected in the environment can drive an elaborate danger-associated behavioral response in mammals.kairomone | olfaction | pheromone | trace amine-associated receptors | G protein-coupled receptor P redator-prey relationships provide a classic paradigm for understanding the molecular basis of complex behavior (1). Predator-derived visual, auditory, and olfactory cues induce hardwired defensive responses in prey that are sculpted by strong evolutionary pressure and are critical for survival. For example, odors from felines, canines, and other predators elicit innate reactions in rodents, including stereotyped avoidance behaviors and stimulation of the hypothalamic-pituitary-adrenal axis that coordinates sympathetic stress responses (1). Aversive reactions to odors can function in reverse as well, as skunk thiols facilitate prey escape by repelling predator species (2).Predator odors contain a class of ecological chemosignals termed kairomones, cues transmitted between species that benefit the detecting organism. Predator odor-derived kairomones that elicit defensive responses in rodents are largely unknown and can be found in fur, dander, saliva, urine, or feces of divergent predator species. One volatile chemical produced by foxes, 2,5-dihydro-2,4,5-trimethylthiazole (TMT), and two nonvolatile lipocalins produced by cats and rats elicit fear-like or aversive behavior in mice, enabling remote or contact-based detection of predator cues (3-5). Each of these chemicals is not broadly produced by predators, raising the possibility that rodents detect a multitude of species-specific predator signals, each of which triggers a hardwir...