Predator-prey relationships provide a classic paradigm for the study of innate animal behavior. Odors from carnivores elicit stereotyped fear and avoidance responses in rodents, although sensory mechanisms involved are largely unknown. Here, we identified a chemical produced by predators that activates a mouse olfactory receptor and produces an innate behavioral response. We purified this predator cue from bobcat urine and identified it to be a biogenic amine, 2-phenylethylamine. Quantitative HPLC analysis across 38 mammalian species indicates enriched 2-phenylethylamine production by numerous carnivores, with some producing >3,000-fold more than herbivores examined. Calcium imaging of neuronal responses in mouse olfactory tissue slices identified dispersed carnivore odor-selective sensory neurons that also responded to 2-phenylethylamine. Two prey species, rat and mouse, avoid a 2-phenylethylamine odor source, and loss-of-function studies involving enzymatic depletion of 2-phenylethylamine from a carnivore odor indicate it to be required for full avoidance behavior. Thus, rodent olfactory sensory neurons and chemosensory receptors have the capacity for recognizing interspecies odors. One such cue, carnivore-derived 2-phenylethylamine, is a key component of a predator odor blend that triggers hard-wired aversion circuits in the rodent brain. These data show how a single, volatile chemical detected in the environment can drive an elaborate danger-associated behavioral response in mammals.kairomone | olfaction | pheromone | trace amine-associated receptors | G protein-coupled receptor P redator-prey relationships provide a classic paradigm for understanding the molecular basis of complex behavior (1). Predator-derived visual, auditory, and olfactory cues induce hardwired defensive responses in prey that are sculpted by strong evolutionary pressure and are critical for survival. For example, odors from felines, canines, and other predators elicit innate reactions in rodents, including stereotyped avoidance behaviors and stimulation of the hypothalamic-pituitary-adrenal axis that coordinates sympathetic stress responses (1). Aversive reactions to odors can function in reverse as well, as skunk thiols facilitate prey escape by repelling predator species (2).Predator odors contain a class of ecological chemosignals termed kairomones, cues transmitted between species that benefit the detecting organism. Predator odor-derived kairomones that elicit defensive responses in rodents are largely unknown and can be found in fur, dander, saliva, urine, or feces of divergent predator species. One volatile chemical produced by foxes, 2,5-dihydro-2,4,5-trimethylthiazole (TMT), and two nonvolatile lipocalins produced by cats and rats elicit fear-like or aversive behavior in mice, enabling remote or contact-based detection of predator cues (3-5). Each of these chemicals is not broadly produced by predators, raising the possibility that rodents detect a multitude of species-specific predator signals, each of which triggers a hardwir...
SUMMARY Background Rodents use olfactory cues for species-specific behaviors. For example, mice emit odors to attract mates of the same species but not competitors of closely related species. This implies rapid evolution of olfactory signaling, although odors and chemosensory receptors involved are unknown. Results Here, we identify a mouse chemosignal, trimethylamine, and its olfactory receptor, trace amine-associated receptor 5 (TAAR5), to be involved in species-specific social communication. Abundant (>1,000-fold increased) and sex-dependent trimethylamine production arose de novo along the Mus lineage after divergence from Mus caroli. The two-step trimethylamine biosynthesis pathway involves synergy between commensal microflora and a sex-dependent liver enzyme, flavin-containing monooxygenase 3 (FMO3), which oxidizes trimethylamine. One key evolutionary alteration in this pathway is the recent acquisition in Mus of male-specific Fmo3 gene repression. Coincident with its evolving biosynthesis, trimethylamine evokes species-specific behaviors, attracting mice but repelling rats. Attraction to trimethylamine is abolished in TAAR5 knockout mice, and furthermore, attraction to mouse scent is impaired by enzymatic depletion of trimethylamine or TAAR5 knockout. Conclusions TAAR5 is an evolutionarily conserved olfactory receptor required for a species-specific behavior. Synchronized changes in odor biosynthesis pathways and odor-evoked behaviors could ensure species-appropriate social interactions.
Recent advances in nanopore sequencing technology have led to a substantial increase in throughput and sequence quality. Together, these improvements may permit real-time benchtop genomic sequencing and antimicrobial resistance gene detection in clinical isolates. In this study, we evaluated workflows and turnaround times for a benchtop long-read sequencing approach in the clinical microbiology laboratory using the Oxford Nanopore Technologies MinION sequencer. We performed genomic and plasmid sequencing of three clinical isolates with both MinION and Illumina MiSeq, using different library preparation methods (2D and rapid 1D) with the goal of antimicrobial resistance gene detection. We specifically evaluated the advantages of using plasmid DNA for sequencing and the value of supplementing MinION sequences with MiSeq reads for increasing assembly accuracy. Resequencing of three plasmids in a reference isolate demonstrated ∼99% accuracy of draft MinION-only assembly and>99.9% accuracy of assembly polished with MiSeq reads. Plasmid DNA sequencing of previously uncharacterized clinical extended-spectrum β-lactamase (ESBL)-producing and isolates using MinION allowed successful identification of antimicrobial resistance genes in the draft assembly corresponding to all classes of observed plasmid-based phenotypic resistance. Importantly, use of plasmid DNA enabled lower depth sequencing, and assemblies sufficient for full antimicrobial resistance gene annotation were obtained with as few as 2,000 to 5,000 reads, which could be acquired in 20 min of sequencing. With a MinION-only workflow that balances accuracy against turnaround time, full annotation of plasmid resistance gene content could be obtained in under 6 h from a subcultured isolate, less time than traditional phenotypic susceptibility testing.
Streptococcus pneumoniae is a leading pathogen with an extracellular lifestyle; however, it is detected by cytosolic surveillance systems of macrophages. The innate immune response that follows cytosolic sensing of cell wall components results in recruitment of additional macrophages, which subsequently clear colonizing organisms from host airways. In this study, we monitored cytosolic access by following the transit of the abundant bacterial surface component capsular polysaccharide, which is linked to the cell wall. Confocal and electron microscopy visually characterized the location of cell wall components in murine macrophages outside membrane-bound organelles. Quantification of capsular polysaccharide through cellular fractionation demonstrated that cytosolic access of bacterial cell wall components is dependent on phagocytosis, bacterial sensitivity to the host’s degradative enzyme lysozyme, and release of the pore-forming toxin pneumolysin. Activation of p38 mitogen-activated protein kinase (MAPK) signaling is important for limiting access to the cytosol; however, ultimately, these are catastrophic events for both the bacteria and the macrophage, which undergoes cell death. Our results show how expression of a pore-forming toxin ensures the death of phagocytes that take up the organism, although cytosolic sensing results in innate immune detection that eventually allows for successful host defense. These findings provide an example of how cytosolic access applies to an extracellular microbe and contributes to its pathogenesis.Importance Streptococcus pneumoniae (the pneumococcus) is a bacterial pathogen that is a leading cause of pneumonia. Pneumococcal disease is preceded by colonization of the nasopharynx, which lasts several weeks before being cleared by the host’s immune system. Although S. pneumoniae is an extracellular microbe, intracellular detection of pneumococcal components is critical for bacterial clearance. In this study, we show that following bacterial uptake and degradation by phagocytes, pneumococcal products access the host cell cytosol via its pore-forming toxin. This phenomenon of cytosolic access results in phagocyte death and may serve to combat the host cells responsible for clearing the organism. Our results provide an example of how intracellular access and subsequent immune detection occurs during infection with an extracellular pathogen.
Streptococcus pneumoniae (the pneumococcus), a leading cause of bacterial disease, is most commonly carried in the human nasopharynx. Colonization induces inflammation that promotes the organism's growth and transmission. This inflammatory response is dependent on intracellular sensing of bacterial components that access the cytosolic compartment via the pneumococcal pore-forming toxin pneumolysin. In vitro, cytosolic access results in cell death that includes release of the proinflammatory cytokine interleukin-1 (IL-1). IL-1 family cytokines, including IL-1, are secreted upon activation of inflammasomes, although the role of this activation in the host immune response to pneumococcal carriage is unknown. Using a murine model of pneumococcal nasopharyngeal colonization, we show that mice deficient in the interleukin-1 receptor type 1 (Il1r1 ؊/؊ ) have reduced numbers of neutrophils early after infection, fewer macrophages later in carriage, and prolonged bacterial colonization. Moreover, intranasal administration of Il-1 promoted clearance. Macrophages are the effectors of clearance, and characterization of macrophage chemokines in colonized mice revealed that Il1r1 ؊/؊ mice have lower expression of the C-C motif chemokine ligand 6 (CCL6), correlating with reduced macrophage recruitment to the nasopharynx. IL-1 family cytokines are known to promote adaptive immunity; however, we observed no difference in the development of humoral or cellular immunity to pneumococcal colonization between wild-type and Il1r1 ؊/؊ mice. Our findings show that sensing of IL-1 cytokines during colonization promotes inflammation without immunity, which may ultimately benefit the pneumococcus. Streptococcus pneumoniae (the pneumococcus) is an opportunistic bacterial pathogen that is responsible for over 1 million deaths annually, mostly in children under the age of 5 years (1). The pneumococcus serially colonizes the mucosal surfaces of the human upper respiratory tract, and carriage of the organism provides the reservoir for all pneumococcal disease (2). Colonization induces airway inflammation that is characterized by a suppurative rhinitis and increased mucus secretion. These secretions promote bacterial growth (3), and inflammation is important for bacterial transmission in a viral coinfection model (4). Human studies have demonstrated that higher bacterial burdens are correlated with a more profound rhinitis (5); however, as a result of this inflammatory response, colonization is normally cleared by the host's immune system within several weeks (6).A well-defined murine model of pneumococcal colonization (7) has elucidated bacterial and host factors that are critical to immune recognition of the pneumococcus, which drives the eventual resolution of the carrier state. Although early colonization triggers the recruitment of neutrophils, these are ineffective at resolving the infection. Clearance of pneumococci from the upper airway over a period of weeks requires a sustained presence of macrophages in the nasopharynx (8). Althou...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.