The marine steam power system includes a large amount of thermal equipment; meanwhile, the marine environment is harsh and the working conditions change frequently. Operation management involves many disciplines, such as heat, machinery, control, electricity, etc. It is a complex multi-discipline physical system with typical nonlinear, multi-parameter, strong coupling characteristics. In order to realize the health management of a marine steam power system, based on digital twin technology combined with the Modelica language, modular modeling, etc., this paper conducts in-depth research on the multi-domain modeling of the marine steam power system, characteristic analysis of variable working conditions, fault simulation, etc. The analysis results show that the dynamic response trend of the model is consistent with the actual operation, the error of the main steam flow at 1800 s is the largest and is −4.9%, and the error of the main steam flow, steam turbine output power, cooling water outlet temperature and other key parameters is within ±5%. Virtual reality mapping between the digital model and the physical equipment is realized, which lays a foundation for mastering the dynamic characteristics of the marine steam power system.