To prepare a kind of Fe-Cu-based friction material with good friction performance and wear resistance, and apply it to the brake structure of automobile machinery, the powder metallurgy method is used to prepare the friction materials in the standard with 4% Ni, 4% Mo and 2% Sn as the auxiliary material, SiC, Al2O3, and zircon sand as the basic friction material, 8% graphite and 3% MoS2 as the lubricating component. Meanwhile, 50% Fe and 20% Cu is used for the preparation of friction materials. The friction and wear resistance can be increased by increasing the carbon fiber content of 0-8% concentration of the material. The results show that the friction coefficient of the Fe-Cu-based friction material is relatively gentle after the addition of 2% carbon fiber, and the compactness peaks, reaching 93.3%. Its shear strength and impact strength peak, which are 37.42Mpa and 6.7J/cm2 respectively. 4% carbon fiber material with a hardness of 120.2 HV is the hardest one, followed by 2% carbon fiber material with a hardness of 118.1 HV. Added with 2% carbon fiber, the abrasion amount of the friction-based material is 0.0027 g at room temperature and-0.0008 g at 400°C after 60 minutes respectively. With all indicators considered, the result shows that the friction performance and wear resistance of Fe-Cu-based friction materials can be increased by adding 2% carbon fiber during the preparation of basic friction materials.