Colorectal cancer (CRC) is one of the public-health concerns worldwide and it requires an effective treatment. However, existing treatment approaches encounter challenges related to specificity and efficacy. To address this issue, a platform for multifunctional drug delivery has been developed, combining bioactive materials with anticancer elements and specific recognition ligands into a single molecule. This study aimed to create a molecular hybrid (MH) containing doxorubicin, AS1411 aptamer, and T9/U4 ASO to regulate SW480 cell proliferation. The AS1411 aptamer targets nucleolin, overexpressed on cancer cell membranes, while T9/U4 ASO inhibits human telomerase RNA activity, further hindering cancer cell proliferation. AS-T9/U4_MH was synthesized via oligonucleotide hybridization, followed by doxorubicin loading and evaluation of its impact on cell proliferation. Binding capability of this MH was verified using fluorescence microscopy and flow cytometry, demonstrating specific recognition of SW480 cells due to nucleolin availability on the cell surface. These findings were corroborated by both microscopy and flow cytometry. AS-T9/U4_MH exhibited anti-proliferative effects, with the doxorubicin-loaded system demonstrating encapsulation and reduced toxicity. Moreover, the presence of Dox within AS-T9/U4_MH led to a notable reduction in hTERT and vimentin expression in SW480 cells. Additionally, examination of apoptotic pathways unveiled a marked decrease in Bcl-2 expression and a simultaneous increase in Bax expression in SW480 cells treated with Dox-loaded AS-T9/U4_MH, indicating its impact on promoting apoptosis. These results suggest that the molecular hybrid holds promise as a system for integrating chemotherapeutic drugs with bioactive materials for cancer treatment delivery.