Background: Doxorubicin (Dox) inhibits DNA replication and causes DNA damage resulting in cell death. It is a common drug for treatment of many cancers. Treatment efficacy and side effects of Dox are critical issues in using it because the drug lacks of specificity. The objective of this study was to improve the specificity of Dox by the incorporation of this drug with AS1411 aptamer (ASA). Methods: Dox was intercalated into the duplex sites of ASA, a recognition molecule for a number of cancer cells, and formed Dox-loaded ASA. The recognition ability proceeded through specific binding between the aptamer and nucleolin overexpressed in the cancer cells. The tested cells were human colorectal adenocarcinoma cell line (SW480) and human normal colon cell CCD841 CoN (CCD841). Binding of ASA to the cells was tested using flow cytometer and fluorescence microscope. Intercalation of Dox into DNA duplex was confirmed by fluorescence spectrometry. Effect of ASA, Dox, and Dox-loaded ASA on cell viability was examined by cell proliferation assay. Caspase-3 activation was analyzed by western blotting. Results: ASA bound specifically to SW480 cells via interaction between the aptamer and nucleolin because the nucleolin was highly expressed in SW480 cells. ASA decreased the viability of SW480 cells in a dose-dependent manner. Dox was more toxic than ASA. Fluorescence quenching revealed that Dox was able to intercalate in base pairing sites of the aptamer. Dox-loaded ASA inhibited the proliferation of SW480 cells, because the aptamer facilitated the Dox uptake into these cells which caused the cell apoptosis, indicated by the significant decrease in procaspase-3, apoptosis marker protein. Conclusion:This study succeeded to prepare Dox-loaded ASA by intercalation of the drug that inherited the binding function from the aptamer and anti-cancer activity from Dox. Dox-loaded ASA showed promise for effective cancer treatment with lower level of side effects.
Cancer treatment commonly relies on chemotherapy. This treatment faces many challenges, including treatment specificity and undesired side effects. To address these, a Dox-loaded Chol-aptamer molecular hybrid (Dox-CAH) was developed. This multivalent interaction system combines the key function of each integrated species: doxorubicin, cholesterol, and two aptamers binding to nucleolin and platelet-derived growth factor BB (PDGF-BB). The study has four stages: preparation of CAH via oligonucleotide hybridization, intercalation of doxorubicin into CAH, verification of CAH binding on SW480 by fluorescence microscopy and flow cytometry, and investigation of effect of Dox-CAH on SW480 proliferation. CAH was successfully prepared, as confirmed by electrophoresis. Flow cytometry and fluorescence microscopy demonstrated CAH binding to SW480, due to the presence of the AS1411 aptamer. This molecular hybrid exhibited specific binding because it did not bind to CCD 841 CoN. CAH binding to PDGF-BB compromises its function, as shown by enzymelinked immunosorbent assay (ELISA) and cell assay. The DNA duplex in this molecular hybrid reduces the cytotoxicity of the Dox-CAH. Binding and the reduction of Dox-CAH toxicity may improve treatment specificity and minimize side effects. Dox-CAH is a model for more effective anticancer therapy, allowing incorporation of chemotherapeutic drugs and recognition elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.