This paper deals with the construction of digital lexicons within the scope of Natural Language Processing. Data Structures called Hash Tables have demonstrated to generate good results for Natural Language Interface for Databases and have data dispersion, response speed and programming simplicity as main features. The storage of the desired information is done by associating a key through the hashing functions that is responsible for distributing the information in this table. The objective of this paper is to present the tool called Visual TaHs that uses a sparse table to a real lexicon (Lexicon of Herbs), improving performance results of several implemented hash functions. Such structure has achieved satisfactory results in terms of speed and storage when compared to conventional databases and can work in various media, such as desktop, Web and mobile.