2019
DOI: 10.1142/s0219876218501244
|View full text |Cite
|
Sign up to set email alerts
|

A Moving Element Method for the Dynamic Analysis of Composite Plate Resting on a Pasternak Foundation Subjected to a Moving Load

Abstract: The paper proposes a computational approach to simulate the dynamic responses of composite plate resting on a Pasternak foundation subjected a moving load using the moving element method (MEM). The plate element stiffness matrix is formulated in a coordinate system which moves with the load. The main convenience is that the load is static in this coordinate system, which avoids the updating of the load locations due to the change of the contact points with the elements. The effects of the Pasternak foundation,… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
5
0

Year Published

2020
2020
2023
2023

Publication Types

Select...
6
3

Relationship

2
7

Authors

Journals

citations
Cited by 13 publications
(5 citation statements)
references
References 22 publications
0
5
0
Order By: Relevance
“…The main limitation of phononic crystals stems from their dependence on the periodic spacing constant, which generates the high-frequency bandgap and thus is not suitable for low-frequency wave mitigations [15,29,30]. Conversely, the underlying mechanism of locally resonant metamaterial is the out-of-phase motions of the local resonators, which counteracts the applied excitation on the structures [31][32][33][34][35]. The bandgaps generated by the metamaterials associated with local resonance depend on the resonant frequency of the resonators embedded in the unit cell, thus making them suitable for low-frequency wave attenuation [36][37][38][39].…”
Section: Introductionmentioning
confidence: 99%
“…The main limitation of phononic crystals stems from their dependence on the periodic spacing constant, which generates the high-frequency bandgap and thus is not suitable for low-frequency wave mitigations [15,29,30]. Conversely, the underlying mechanism of locally resonant metamaterial is the out-of-phase motions of the local resonators, which counteracts the applied excitation on the structures [31][32][33][34][35]. The bandgaps generated by the metamaterials associated with local resonance depend on the resonant frequency of the resonators embedded in the unit cell, thus making them suitable for low-frequency wave attenuation [36][37][38][39].…”
Section: Introductionmentioning
confidence: 99%
“…They employed the layerwise theory, the modal analysis, and the differential quadrature method in their formulation. Cao et al [13] employed the moving element method (MEM) for the dynamic analysis of composite plates resting on a Pasternak foundation under a moving load. The MEM is based on the FEM and is formulated in a coordinates system moving with the load.…”
Section: Introductionmentioning
confidence: 99%
“…More recently, the extensions of MEM for investigating the static and dynamic responses of homogenous Mindlin plates and functionally graded plates supported by a viscoelastic foundation subjected to moving loads were performed in the research works of Luong et al (2018, 2020). Furthermore, the MEM has been also successfully developed by Cao et al (2018b) for the dynamic analysis of laminate composite plates.…”
Section: Introductionmentioning
confidence: 99%