Nonintrusive Load Monitoring (NILM) uses computational methods to disaggregate and classify electrical appliances signals. The classification is usually based on the power signatures of the appliances obtained by a feature extractor. State-of-the-art results were obtained extracting NILM features with convolutional neural networks (CNN). However, it depends on the training process with large datasets or data augmentation strategies. In this paper, we propose a feature extraction strategy for NILM using the Scattering Transform (ST). The ST is a convolutional network analogous to CNN. Nevertheless, it does not need a training process in the feature extraction stage, and the filter coefficients are analytically determined (not empirically, like CNN). We perform tests with the proposed method on different publicly available datasets and compare the results with state-of-the-art deep learning-based and traditional approaches (including wavelet transform and V-I representations). The results show that ST classification accuracy is more robust in terms of waveform parameters, such as signal length, sampling frequency, and event location. Besides, ST overcame the state-of-the-art techniques for single and aggregated loads (accuracies above 99% for all evaluated datasets), in different training scenarios with single and aggregated loads, indicating its feasibility in practical NILM scenarios.